TEST REPORT

PARTICULATE AND METALS EMISSION TEST

ROTARY FURNACE 1 NORTH BAGHOUSE (B) STACK ROTARY FURNACE 2 SOUTH BAGHOUSE (A) STACK

H. KRAMER & COMPANY CHICAGO, ILLINOIS

PREPARED FOR:

H. KRAMER & COMPANY

1345 W. 21st Street Chicago, Illinois 60608 Phone: 312.226.6600

E-mail: weilr@hkramer.com Attention: Mr. Randy Weil

MCDERMOTT WILL & EMERY LLP

227 W. Monroe Street Chicago, Illinois 60606 Phone: 312.984.7719 Fax: 312.984.7700

E-mail: twiener@mwe.com Attention: Mr. Todd Wiener

ARI Project No. 840-18
ARI Test Protocol No. 840-17 Revision 2
ARI Proposal No. 18913 Revision 2
H. Kramer Purchase Order No. 060742
Test Dates: September 17 through 20, 2013

ARI Environmental, Inc. 951 Old Rand Road, Unit 106 Wauconda, Illinois 60084

Phone: 847.487.1580 Ext. 103

Fax: 847.487.1587

E-mail: lgoldfine@arienv.com

Larry Goldfine President

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13 Page: i of iii

TABLE OF CONTENTS

	~	
SECTIONS		PAGE
	REPORT CERTIFICATION	iii
Section 1	INTRODUCTION AND SUMMARY	1-1
Section 2	TESTING AND ANALYTICAL PROCEDURES 2.1 Overview 2.2 Methodology 2.2.1 Sampling and Velocity Traverse Locations (USEPA Method 1) 2.2.2 Velocity and Volume Flow Rate Determination (USEPA Method 2) 2.2.3 CO ₂ , O ₂ and N ₂ Concentration and Molecular Weight (USEPA Method 3) 2.2.4 Flue Gas Moisture Content (USEPA Method 4) 2.2.5 PM Determination (USEPA Methods 5 and 202) 2.2.5.1 Sampling Apparatus 2.2.5.2 Sampling Procedures 2.2.5.3 Sample Recovery Procedures 2.2.5.4 Analytical Procedures 2.2.6 Visible Emissions Measurements (USEPA Method 22) 2.2.7 Metals Determination (USEPA Method 29)	2-1 2-1 2-1 2-1 2-1 2-1 2-2 2-2 2-2 2-4 2-5 2-5 2-7 2-7
	2.2.7.1 Sampling Apparatus 2.2.7.2 Sampling Procedures 2.2.7.3 Sample Recovery Procedures 2.2.7.4 Analytical Procedures 2.3 Emission Rate Determination 2.4 Stationary Source Audit Sample Program (SSASP)	2-7 2-9 2-10 2-10 2-10 2-11
Section 3	PROCESS DESCRIPTION	3-1
Section 4	TEST RESULTS	4-1
TABLES		
Table 1-1 Table 1-2 Table 4-1	Summary of Average PM and Lead Test Results Summary of Visible Emissions Test Results Summary of PM Test Results – North Baghouse Serving Rotary Furnace 1	1-2 1-2 4-2
Table 4-2	Summary of Metals Test Results – North Baghouse Serving Rotary Furnace 1	4-3
Table 4-3	Summary of PM Test Results – South Baghouse Serving Rotary Furnace 2	4-6
Table 4-4	Summary of Metals Test Results – South Baghouse Serving Rotary Furnace 2	4-7

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13 Page: ii of iii

TABLE OF CONTENTS

FIGURES		PAGE
Figure 2-1 Figure 2-2	USEPA Methods 5/202 Particulate Matter Sampling Train USEPA Method 29 Sampling Train	2-3 2-8
APPENDICES		
Appendix A	Rotary Furnace 1 North Baghouse Stack Calculation Summaries and Field Data	
Appendix B	Rotary Furnace 2 South Baghouse Stack Calculation Summaries and Field Data	
Appendix C Appendix D Appendix E Appendix F	Laboratory Data Production Data Calibration Data Test Program Qualifications	

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: iii of iii

REPORT CERTIFICATION

STATEMENT OF CONFORMANCE AND TEST REPORT CERTIFICATION

I certify, to the best of my knowledge, that this test program was conducted in a manner conforming to the criteria set forth in ASTM D7036-04: <u>Standard Practice for Competence of Air Emission Testing Bodies</u>, and that project management and supervision of all project related activities were performed by qualified individuals as defined by this practice.

I further certify that this test report and all attachments were prepared under my direction or supervision in accordance with the ARI Environmental, Inc. quality management system designed to ensure that qualified personnel gathered and evaluated the test information submitted. Based on my inquiry of the person or persons who performed the sampling and analysis relating to this performance test, the information submitted in this test report is, to the best of my knowledge and belief, true, accurate, and complete.

Larry Goldfine, QSTI

President

ARI Environmental, Inc.

SECTIONONE

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 1 of 23

Introduction and Summary

This report details the particulate matter (PM) and metals compliance emission test conducted by ARI Environmental, Inc. (ARI) at the H. Kramer & Company (H. Kramer) facility in Chicago, Illinois.

Testing was conducted to comply with the sampling requirements specified in H. Kramer's Consent Decree and Illinois Environmental Protection Agency (IEPA) Construction Permit No. 1111 045. Testing was conducted pursuant to a stack test protocol reviewed and approved by IEPA.

Three 3-hour test runs were performed on each baghouse stack for PM, metals and visible emissions (VE):

Test Dates	Source
9/17 & 9/18/13	New North Baghouse (B) Stack serving Rotary Furnace (RF) 1
9/19 & 9/20/13	New South Baghouse (A) Stack serving RF-2

Test methods followed those as detailed in the Code of Federal Regulations, Title 40, Part 60 (40 CFR 60), Appendix A, USEPA Methods 1-4, 5, 22 and 29; 40 CFR 51, Appendix M, USEPA Method 202; and the <u>Quality Assurance Handbook for Air Pollution Measurement Systems</u>, Volume III, Stationary Source Specific Methods.

PM sampling was conducted in accordance with USEPA Method 5 for front-half filterable PM combined with back-half condensable PM in accordance with USEPA Method 202. The allowable PM concentration is 0.015 gr/dscf for both furnaces. There is also a PM emission limit of 3.77 lb/hr for RF-1 and 4.48 lb/hr for RF-2.

Metals sampling was conducted in a separate sampling train for the metals listed in USEPA Method 29 (except mercury). That list includes:

Antimony (Sb)	Cobalt (Co)	Phosphorus (P)
Arsenic (As)	Copper (Cu)	Selenium (Se)
Barium (Ba)	Lead (Pb)	Silver (Ag)
Beryllium (Be)	Manganese (Mn)	Thallium (TI)
Cadmium (Cd)	Nickel (Ni)	Zinc (Zn)
Chromium (Cr)		

Testing was conducted by Messrs. Larry Goldfine, Rob Burton, Steve Flaherty, Jeff Goldfine and Tim Martch of ARI. Mr. Kailash Purohit of H. Kramer coordinated the process operations and collected process data. The test was witnessed by Mr. Kevin Mattison of the IEPA Compliance Section.

The average PM and lead test results are provided in Table 1-1. The results for the other metals tested are included in Section 4 of this report.

The Method 22 VE observations conducted during the first hour of each initial test run indicated no VE on either baghouse. The results are summarized in Table 1-2. The field data sheets for those observations are provided in Appendix A and Appendix B.

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 2 of 23

SECTIONONE

Introduction and Summary

TABLE 1-1. SUMMARY OF AVERAGE PM AND LEAD TEST RESULTS

			Particulate Matter		Le	ad
Process	Source	Test Dates	Conc. (gr/dscf)	Emission Rate (lb/hr)	Conc. (gr/dscf)	Emission Rate (lb/hr)
RF-1	North Baghouse	9/17/ & 9/18/13	0.0005	0.253	<0.000001	<0.00043
RF-2	South Baghouse	9/19 & 9/20/13	0.0007	0.351	<0.000003	<0.00157

TABLE 1-2. SUMMARY OF VISIBLE EMISSIONS TEST RESULTS

Process	Source	Test Date	Visible Emissions Duration Min:Sec
RF-1	North Baghouse	9/17/13	0:00
RF-2	South Baghouse	9/19/13	0:00

SECTIONTWO

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 3 of 23

Testing and Analytical Procedures

2.1 OVERVIEW

Three 3-hour test runs were conducted on the North Baghouse controlling emissions from the RF-1 on September 17 and 18, 2013. Three 3-hour test runs were conducted on the South Baghouse controlling emissions from the RF-2 on September 19 and 20, 2013.

The purpose of the testing was to determine the concentrations and mass emission rates of PM, lead and other metals as well as VE.

2.2 METHODOLOGY

Test methods followed those as detailed in 40 CFR 60, Appendix A, USEPA Methods 1-4, 5, 22 and 29; 40 CFR 51, Appendix M, USEPA Method 202; and the <u>Quality Assurance Handbook for</u> Air Pollution Measurement Systems, Volume III, Stationary Source Specific Methods.

2.2.1 Sampling and Velocity Traverse Locations (USEPA Method 1)

The velocity sampling points at each stack location listed below were determined following USEPA Method 1 procedures:

Source	Duct Diameter (inches)	No. of Ports	Port Location Downstream from Flow Disturbance (diameters)	Port Location Upstream from Flow Disturbance (diameters)	Sampling Points per Port	Total Points
North Baghouse & South Baghouse	59.5	2	4.8	1.7	12	24

A cyclonic flow check was conducted prior to the beginning of the test to demonstrate that cyclonic flow conditions did not exist at each sampling location.

2.2.2 Velocity and Volume Flow Rate Determination (USEPA Method 2)

Stack gas velocity and volume flow rate were determined following USEPA Method 2 procedures. Velocity traverses were performed using a Type-S pitot tube with the velocity head pressure measured on a Dwyer oil gauge inclined manometer to the nearest 0.01-in. H_2O . Temperature measurements were performed with a Chromel-Alumel thermocouple connected to a digital direct read-out potentiometer.

2.2.3 CO₂, O₂ and N₂ Concentration and Molecular Weight (USEPA Method 3)

The stack gas molecular weight was determined following USEPA Method 3. Gas samples were collected in 16-liter Tedlar bags using ARI's integrated bag collection system and analyzed for carbon dioxide (CO_2), oxygen (O_2) and nitrogen (N_2) (by difference) using a Hays Orsat type analyzer.

SECTIONTWO

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 4 of 23

Testing and Analytical Procedures

2.2.4 Flue Gas Moisture Content (USEPA Method 4)

The stack gas moisture content was determined following USEPA Method 4. This method was performed as part of the USEPA Methods 5/202 and 29 sample trains. Moisture was collected in a series of chilled impingers containing methodology-specific liquids and silica gel. The volume gain in the water impingers and weight gain in the silica gel impinger were used to calculate the moisture content. The psychrometric equations in the method were used to calculate the moisture content in percent by volume.

2.2.5 PM Determination (USEPA Methods 5 and 202)

Sampling was conducted in accordance with USEPA Methods 5 and 202 using an Apex Instruments, Inc. PM sampling train (see Figure 2-1). The front-half probe and filter assemblies were analyzed for filterable PM using USEPA Method 5. All filterable PM was assumed to be <PM₁₀. The back-half impinger catch was analyzed for condensable PM in accordance with USEPA Method 202 procedures.

2.2.5.1 Sampling Apparatus

Assembled by ARI personnel, the sampling train consisted of the following:

Nozzle - Borosilicate glass with sharp, tapered leading edge.

<u>Probe</u> - Borosilicate glass with a heating system capable of maintaining a probe exit temperature of 248°F ±25°F.

Pitot Tube - Type-S, attached to probe for monitoring stack gas velocity.

<u>Heated Filter Holder</u> - Borosilicate glass with a 4-in. Teflon frit filter support and a silicone rubber gasket. The holder design provided a positive seal against leakage from the outside or around the filter. The filter holder was heated to 248°F ±25°F during sampling. A thermocouple was placed in the back-half of the filter support in direct contact with the sample stream. A quartz fiber filter that met the requirements of USEPA Method 5 was used.

Ambient Filter Holder - Unheated borosilicate glass with a 3-in. Teflon frit filter support and a silicone rubber gasket. A thermocouple was placed in the back-half of the filter holder to measure sample gas temperature by direct contact with the sample stream. Temperature was maintained between 65 and 85°F. A Teflon filter disc was placed in the filter holder.

<u>Draft Gauge</u> - Inclined manometer with a readability of 0.01-in. H_2O in the 0 to 10-in. range.

Condenser - Glass, coil type with compatible fittings.

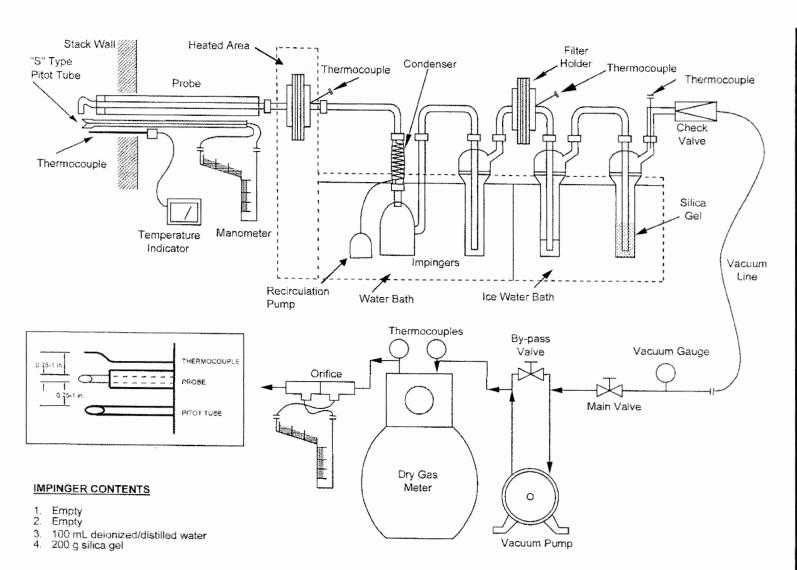


FIGURE 2-1. USEPA METHODS 5/202 PARTICULATE MATTER SAMPLING TRAIN

SECTION TWO

Testing and Analytical Procedures

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13 Page: 5 of 23

SECTIONTWO

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 6 of 23

Testing and Analytical Procedures

Impingers – Four (4) impingers connected in series with glass ball joints. The first impinger was a custom glass jar designed with a shortened stem to act as a moisture knockout and allowed the condenser coil to set atop the inlet in a vertical position. The second, third and fourth impingers were of the Greenburg-Smith design, but modified by replacing the standard tip with a ½-in. i.d. glass tube extending to within ½-in. of the bottom of the impinger flask. The second and third impingers were connected using the ambient filter holder.

Metering System - Apex Model 522. Vacuum gauge, leak-free pump, thermometers capable of measuring temperature to within 5°F, dry gas meter with ±2 percent accuracy and related equipment as required to maintain an isokinetic sampling rate and to determine sample volume.

 $\underline{Barometer}$ - Mercury barometer capable of measuring atmospheric pressure to within ± 0.1 -in. Hg.

2.2.5.2 Sampling Procedures

After the minimum number of traverse points was selected, the stack pressure, temperature, moisture and range of velocity head were measured according to procedures described in USEPA Methods 1 through 4. The first and second impingers were initially empty. The third impinger contained 100 milliliters (mL) of deionized/distilled water. The fourth impinger contained 200 grams of silica gel.

The impingers were placed in a container that had two compartments. The first two impingers were placed in the first compartment, and the third and fourth impingers were placed in the second compartment. The first compartment contained water that was circulated through the condenser to reduce the sample gas to between 65 and 85°F at the exit of the ambient filter. The second compartment contained ice water to reduce the sample gas to ≤68°F upon exiting the last impinger. Both temperatures were recorded at each traverse point interval throughout each test run.

The sampling train was leak-checked at the sampling site by plugging the inlet to the nozzle and pulling a vacuum of 15-in. Hg. A leak rate of less than 0.02 ft³/min at a vacuum of 15-in. Hg was considered acceptable. At the completion of each test run (and at the mid-way point through the test), the sampling train was again leak-checked by the same procedure, but at the highest vacuum attained during the test run. Both pre and post-test leak checks of the pitot tube were made for each test run. Ice was placed around the impingers to keep the temperature of the gases leaving the last impinger at less than 68°F.

During sampling, stack gas and sampling train data were recorded at specified intervals. Isokinetic sampling rates were set throughout the sampling period with the aid of a programmable calculator.

SECTIONTWO

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 7 of 23

Testing and Analytical Procedures

2.2.5.3 Sample Recovery Procedures

After sampling was completed, a post-test nitrogen purge was conducted with the impingers still on ice at the meter ΔH @ for 60 minutes. Before the purge step began, the short stem of the first impinger was replaced with a long stem that was within ½-inch of the bottom of the impinger. If the stem did not extend below the water level in the impinger by 1 cm, a measured amount of degassed, deionized, distilled water was added to adjust the level.

Method 5

The sample fractions were recovered as follows:

Container 1 - The heated filter was removed from the holder and placed in a petri dish.

<u>Container 2</u> - Loose PM and acetone washings from all sample-exposed surfaces prior to the filter were placed in a glass bottle, sealed and labeled. PM was removed from the probe with the aid of a brush and acetone rinsing. The liquid level was marked after the container was sealed.

<u>Container 3</u> - 150 mL of acetone was taken for blank analysis. The blank was obtained and treated in a similar manner as the contents of Container 2.

Method 202

The sample fractions were recovered as follows:

Container 4 - The contents from the first two impingers were placed into a glass container. The impingers (including the short stem), connecting glassware and front-half of the ambient filter holder were quantitatively rinsed twice with distilled/deionized water, and the rinse was added to this container. The liquid level was marked after the container was sealed.

<u>Container 5</u> - The first two impingers (including the short stem), connecting glassware and front-half of the ambient filter holder were rinsed with acetone, followed by two rinses with hexane, and placed in a glass container. The liquid level was marked after the container was sealed.

Container 6 - The ambient filter was removed and placed in a petri dish.

Containers 7 & 8 - 150 mL of distilled/deionized water and hexane were taken for blank analysis. The blanks were obtained and treated in a similar manner as the contents of Containers 4 and 5.

The contents of the third impinger were weighed and discarded. The contents of the fourth impinger (silica gel) were weighed to the nearest gram.

2.2.5.4 Analytical Procedures

Method 5

The analytical procedures followed those described in USEPA Method 5.

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 8 of 23

SECTIONTWO

Testing and Analytical Procedures

<u>Container 1</u> - The filter and any loose PM from this sample container were placed in a tared glass weighing dish, dried at 105°C for 3 hours, desiccated for 24 hours and weighed to a constant weight to the nearest 0.1 mg.

<u>Container 2</u> - The acetone washings were transferred to a tared beaker and evaporated to dryness at ambient temperature and pressure. Then the contents were placed in a dessicator for 24 hours and weighed to a constant weight to the nearest 0.1 mg.

<u>Container 3</u> - The acetone blank was transferred to a tared beaker and evaporated to dryness at ambient temperature and pressure. The contents were then desiccated for 24 hours and weighed to a constant weight to the nearest 0.1 mg.

Method 202

The analytical procedures followed those described in USEPA Method 202.

Container 4 - The liquid in this container was measured volumetrically and placed into a separatory funnel. Approximately 30 mL of hexane was added, mixed well and the lower organic phase drained off. This procedure was repeated twice, leaving a small amount of the organic/hexane phase in the separatory funnel each time to yield approximately 90 mL of organic extract. This organic extract was combined with Container 5. The aqueous fraction from Container 4 was transferred to a tared beaker and evaporated in an oven at 105°C to no less than 10 mL and allowed to air dry at ambient temperature. If a dried constant weight could not be achieved, the residue was redissolved in 100 mL of water and titrated with 0.1N ammonium hydroxide to a pH of 7.0. The aqueous phase was evaporated in an oven at 105°C to approximately 10 mL, transferred to a preweighed tin, evaporated to dryness in a fume hood at ambient temperature and pressure, placed in a desiccator for 24 hours and weighed to a constant weight to the nearest 0.1 mg. The gain in mass represents the inorganic PM collected in the sampling train backhalf.

Container 5 - The contents of this container were combined with the organic extract from Container 4, placed in a tared beaker and evaporated at ambient temperature and pressure in a fume hood to no less than 10 mL. The beaker contents were then transferred to a pre-weighed tin, evaporated to dryness at ambient temperature and pressure in a fume hood, placed in a desiccator for 24 hours and weighed to a constant weight to the nearest 0.1 mg. The gain in mass represents the organic PM collected in the sampling train back-half.

Container 6 – The ambient filter was folded in quarters and placed into a 50 mL extraction tube. Sufficient deionized/distilled water was used to cover the filter. The extraction tube was placed in a sonication bath and the water soluble material was extracted for a minimum of 2 minutes. The aqueous extract was combined with the contents of Container 4. This step was completed a total of three times. After completion of the aqueous extraction, the filter was covered with a sufficient amount of hexane. The extraction tube was placed in a sonication bath, and the organic material was extracted for a minimum of 2 minutes. The organic extract was combined with the contents of Container 5. This step was completed a total of three times. The procedures for Container 6 were completed prior to any procedures for Containers 4 and 5.

SECTIONTWO

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 9 of 23

Testing and Analytical Procedures

Container 7 - The water blank was transferred to a tared beaker and evaporated to approximately 10 mL in an oven at 105°C, transferred to a pre-weighed tin, evaporated to dryness at ambient temperature and pressure in a fume hood, placed in a desiccator for 24 hours and weighed to a constant weight to the nearest 0.1 mg.

<u>Container 8</u> - The hexane blank was transferred to a tared beaker, evaporated to approximately 10 mL at ambient temperature and pressure in a fume hood, transferred to a pre-weighed tin, evaporated to dryness at ambient temperature and pressure in a fume hood, placed in a desiccator for 24 hours and weighed to a constant weight to the nearest 0.1 mg.

The term "constant weight" means a difference of no more than 0.5 mg or 1 percent of the total weight less tare weight, whichever is greater between two consecutive readings, with no less than 6 hours of desiccation between weighings.

2.2.6 Visible Emissions Measurements (USEPA Method 22)

The determination of compliance with the VE requirements for this test was conducted following the procedures described in 40 CFR 60, Appendix A, USEPA Method 22, Visible Determination of Fugitive Emissions from Material Sources and Smoke Emissions from Flares.

Each stack was visually observed for a period of 60 minutes during the first sampling run on each baghouse stack, with a 5-minute rest period between each 20 minutes of observation. Observation periods and emission durations were recorded by employing two stopwatches. The first stopwatch was started and stopped during each observation period. The second stopwatch was available to record the cumulative emissions during each test if they were to occur. The sum of the timed emissions was the basis for compliance determination. No visible emissions were observed on either stack during the test.

2.2.7 Metals Determination (USEPA Method 29)

Sampling and analysis for the following metals were performed in accordance with USEPA Method 29 using an Apex Instruments, Inc. sampling train:

Antimony (Sb)	Arsenic (As)	Barium (Ba)	Beryllium (Be)
Cadmium (Cd)	Chromium (Cr)	Cobalt (Co	Copper (Cu)
Lead (Pb)	Manganese (Mn)	Nickel (Ni)	Phosphorus (P)
Selenium (Se)	Silver (Ag)	Thallium (TI)	Zinc (Zn)

As shown in Figure 2-2, the samples were withdrawn from the exhaust stack and collected in a heated sample probe, heated filter (front-half catch) and a series of ice cooled impingers containing an acid/peroxide solution (back-half catch).

2.2.7.1 Sampling Apparatus

Assembled by ARI personnel, the sampling train consisted of the following:

Nozzle - Borosilicate glass with sharp, tapered leading edge.

Testing and Analytical Procedures H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13 Page: 10 of 23

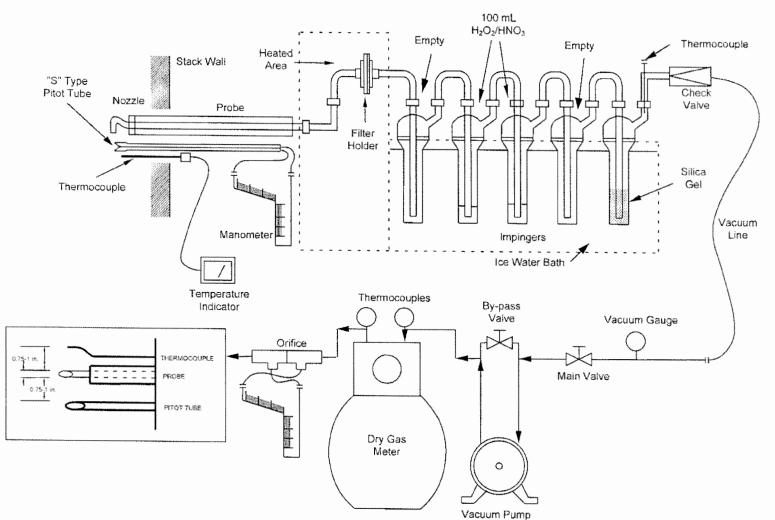


FIGURE 2-2. USEPA METHOD 29 SAMPLING TRAIN

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 11 of 23

SECTIONTWO

Testing and Analytical Procedures

<u>Probe</u> - Borosilicate glass with a heating system capable of maintaining a probe exit temperature of 248°F ±25°F.

Pitot Tube - Type-S, attached to probe for monitoring stack gas velocity.

Filter Media - 4-in. quartz-fiber filter that met the requirements of Method 29.

<u>Filter Holder</u> - Borosilicate glass with a 4-in. Teflon frit filter support and a Viton O-ring gasket. The holder design provided a positive seal against leakage from the outside or around the filter. The filter holder was heated to 248°F ±25°F during sampling. A thermocouple was placed in the back-half of the filter holder for direct measurement of the sample stream temperature.

<u>Draft Gauge</u> - Inclined manometer with a readability of 0.01-in. H_2O in the 0 to 1-in. range and 0.1-in. H_2O in the 1 to 10-in. range.

<u>Impingers</u> – Five impingers connected in series with glass ball joints. The first impinger was empty with a shortened stem, the second and third impingers contained 100 mL of dilute nitric acid/hydrogen peroxide mixture, the fourth impinger was empty and the fifth impinger contained approximately 200 grams of silica gel.

<u>Metering System</u> - Apex Model 522. Vacuum gauge, leak-free pump, thermometers capable of measuring temperature to within 5°F, dry gas meter with ±2 percent accuracy and related equipment as required to maintain an isokinetic sampling rate and to determine sample volume.

<u>Barometer</u> - Mercury barometer capable of measuring atmospheric pressure to within ±0.1-in. Hg.

2.2.7.2 Sampling Procedures

After the minimum number of traverse points was selected, the stack pressure, temperature, moisture and range of velocity head was measured according to procedures described in USEPA Methods 1 through 4.

The sampling train was leak-checked at the sampling site by plugging the inlet to the nozzle and pulling a vacuum of 15-in. Hg. A leak rate of less than 0.02 ft³/min at a vacuum of 15-in. Hg. was considered acceptable. At the completion of each test run, the sampling train was again leak-checked by the same procedure, but at the highest vacuum attained during the test run. Both pre and post-test leak checks of the pitot tube were made for each test run. Ice was placed around the impingers to keep the temperature of the gases leaving the last impinger at less than 68°F.

During sampling, stack gas and sampling train data were recorded at specified intervals. Isokinetic sampling rates were set throughout the sampling period with the aid of a programmable calculator.

SECTIONTWO

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 12 of 23

Testing and Analytical Procedures

2.2.7.3 Sample Recovery Procedures

After sampling was completed and the final leak checks were performed, the sampling train was moved carefully from the test site to the recovery area.

The sample fractions were recovered as follows:

Container 1 - The filter was removed from the filter holder, placed in a clean petri dish and labeled.

<u>Container 2</u> - A brush and acetone were used to clean the probe and other fittings as required. The washings from the inner surfaces of the nozzle and upstream portions of the filter holder were collected in a bottle and labeled.

Container 3 - A brush and 0.1N nitric acid (HNO₃) were used to rinse the probe and other fittings as required. The washings from the inner surfaces of the nozzle and upstream portions of the filter holder were collected in a bottle and labeled. The liquid level was marked after the container was sealed.

Container 4 - The contents of impingers 1, 2 and 3 were placed in a graduated cylinder to measure the total volume collected then rinsed with 0.1N HNO₃, transferred to a bottle and labeled. The contents of impinger 4 were placed in a graduated cylinder to measure the total volume.

<u>Container 5</u> - The contents of impinger 5 were transferred to a clean bottle and labeled. The weight of the silica gel was then determined. The difference between this final weight and the initial weight was the total moisture collected by the silica gel.

2.2.7.4 Analytical Procedures

Containers 1 through 4 and associated blanks were transported to DAT Labs in Plain City, Ohio and analyzed for metals by inductively coupled argon plasma (ICAP) in accordance with USEPA Method 29. Two audit samples (one filter and one back-half catch) were also analyzed for the Method 29 metals.

2.3 EMISSION RATE DETERMINATION

The PM emission rate (lb/hr) (front and back half) was calculated for each run by multiplying the measured PM concentration (lb/dscf) for each fraction by the respective volumetric flow rate (dscfh). The metals emission rate (lb/hr) was calculated for each of the speciated metals by multiplying the measured metals concentration for each speciated metal (lb/dscf) by the respective stack gas volumetric flow rate (dscfh).

SECTIONTWO

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 13 of 23

Testing and Analytical Procedures

2.4 STATIONARY SOURCE AUDIT SAMPLE PROGRAM (SSASP)

The stationary source audit sample program (SSASP) was developed by The NELAC Institute (TNI) and is implemented by USEPA. SSASP audit samples are currently required for specific USEPA reference methods (including USEPA Method 29) for stationary source tests performed to establish degree of compliance with regulatory performance standards. Therefore, USEPA Method 29 metals audit samples (one filter and one impinger solution audit sample) were obtained from an EPA certified audit sample provider (ERA). Since lead is the primary metal of interest, the target concentration in the audit samples was estimated based on the general lead concentration obtained during the previous 2011 stack test on the two furnaces. Because the new baghouses have secondary HEPA filters, the target concentration was based on ~10% of the lead concentration measured during that test. The other metals contained in the audit samples had similar concentration values to the lead. The audit results are provided in Appendix C of this report.

SECTIONTHREE

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 14 of 23

Process Description

H. Kramer operates one (1) 30-ton rotary furnace and one (1) 60-ton rotary furnace.

Two new baghouses with HEPA filters were installed to control emissions from the Rotary 1 furnace (North Baghouse [B]) and Rotary 2 furnace (South Baghouse [A]).

The following production data was provided by Randy Weil, Executive Vice President, H. Kramer & Co. for the test program:

Start Date Time	End Date Time	Furnace No.	Batch	Avg. lb. Charged 24 hr. Cycle	Avg. Ib. Charged for Hours Charged	Avg. lb. Poured for Hours Poured	Test Runs
9/16/13 16:15	9/17/13 13:00	RF-1	R7149	3,368	10,430	16,625	North BH 1 & 2
9/17/13 13:20	9/18/13 12:00	RF-1	R7150	3,745	8,170	21,310	North BH 2 & 3
9/18/13 20:00	9/19/13 15:35	RF-2	K4032	5,349	16,565	26,320	South BH 1 & 2
9/19/13 16:10	9/20/13 14:20	RF-2	K4033	4,759	24,460	24,165	South BH 3

Furnace temperatures were held steady from tap-out time throughout pouring cycle:

Small Rotary (RF-1)

1,960°F +/- 10°F

Large Rotary (RF-2) 1,980°F +/- 15°F

Average Baghouse Inlet

	l	emperatur	е	Average Amperage		
Baghouse / Furnace	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3
North / RF-1	113	137	135	295	286	283
South / RF-2	155	143	162	268	270	261

Average Baghouse Pressure Drop, in. H₂O

					. + 10 , , , , , , ,		
		North BH		South BH			
	DC3	DC4	NAF	DC1	DC2	NAF	
Run 1	5.26	0.0	1.81	0.0	5.87	1.03	
Run 2	5.31	0.0	1.84	0.0	5.39	1.04	
Run 3	5.27	0.0	1.83	0.0	7.25	1.04	

All DP measurements are before and after the filter media. For the DC readings, before is in the mid-section below the tube-sheet, after is in the upper section after the tube-sheet. For the NAF readings, before is in the roof before the filters, after is in the roof after the filters.

During testing, no unusual circumstances were experienced. The furnaces and baghouses operated as expected without incident. Additional production data for the sources tested during this program are presented in Appendix D.

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 15 of 23

Test Results

The test results for the North Baghouse serving RF-1 are summarized in Tables 4-1 and 4-2.

The test results for the South Baghouse serving RF-2 are provided in Tables 4-3 and 4-4.

The results indicate that the measured PM (filterable plus condensable) concentrations were less than 10% of the 0.015 gr/dscf limit specified in in the permit. The North Baghouse average PM emission rate of 0.25 lb/hr was well under the allowable limit of 3.77 lb/hr. The South Baghouse average PM emission rate of 0.35 lb/hr was well under the allowable limit of 4.48 lb/hr.

The measured lead concentrations were also very low. For comparison purposes, the results were less than 1% of the proposed 226.14 (b) lead concentration standard for rotary furnaces of 0.0001 gr/dscf.

The calculation summaries, field data, laboratory data, production data, test equipment calibration data and test program qualifications are included in the appendices as detailed in the Table of Contents.

SECTIONFOUR

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 16 of 23 **Test Results**

TABLE 4-1. SUMMARY OF PM TEST RESULTS – NORTH BAGHOUSE SERVING ROTARY FURNACE 1

RUN NO. : TEST DATE : TEST TIME :	1 9/17/13 08:15 - 11:32	2 9/17/13 12:35 – 15:43	3 9/18/13 <u>07:40 - 10:48</u>	Average
Stack Gas Parameters Temperature, °F Velocity, av. ft/sec Volumetric flow, acfm Volumetric flow, scfm Volumetric flow, dscfh Moisture, av. % vol. Carbon Dioxide, av. % vol. Oxygen, av. % vol.	111.6	132.5	130.3	124.8
	57.6	58.0	58.3	58.0
	66,771	67,142	67,510	67,141
	60,922	59,119	59,351	59,797
	3,624,402	3,479,681	3,493,963	3,532,682
	0.9	1.9	1.9	1.5
	0.2	0.3	0.4	0.3
	20.6	20.6	20.4	20.5
Sample Time, min. Volume, dscf Total PM collected, mg Filterable PM collected, mg Condensable PM collected, mg* Isokinetic ratio, %	180 107.102 4.22 1.92 2.30 98.7	180 110.678 2.65 0.25 2.40 106.2	180 107.094 3.61 1.11 2.50 102.3	
Filterable Particulate Matter Concentration grains/dscf x 10 ⁻⁶ lb/dscf Emission rate lb/hr	0.00028	0.00003	0.00016	0.00016
	0.0395	0.0050	0.0229	0.0225
	0.1432	0.0173	0.0798	0.0801
Condensable Particulate Matter Concentration grains/dscf x 10 ⁻⁶ lb/dscf Emission rate lb/hr	0.00033	0.00033	0.00036	0.00034
	0.0474	0.0478	0.0515	0.0489
	0.1716	0.1663	0.1798	0.1726
Total Particulate Matter Concentration grains/dscf x 10 ⁻⁶ lb/dscf Emission rate lb/hr	0.00061	0.00037	0.00052	0.00050
	0.0869	0.0528	0.0743	0.0713
	0.3148	0.1837	0.2596	0.2527
Visible Emissions, min:sec	0.00			

^{*}Corrected for blank

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 17 of 23

Test Results

SECTIONFOUR

TABLE 4-2. SUMMARY OF METALS TEST RESULTS – NORTH BAGHOUSE SERVING ROTARY FURNACE 1

RUN NO. :	1	2	3	<u>Average</u>
TEST DATE :	9/17/13	9/17/13	9/18/13	
TEST TIME :	08:15 – 11:32	12:35 – 15:43	07:40 – 10:48	
Stack Gas Parameters Temperature, °F Velocity, av. ft/sec Volumetric flow, acfm Volumetric flow, scfm Volumetric flow, dscfh Moisture, av. % vol. Carbon Dioxide, av. % vol. Oxygen, av. % vol.	114.0	135.8	133.7	124.9
	55.6	56.6	57.8	56.1
	64,445	65,529	66,993	64,987
	58,547	57,355	58,562	57,951
	3,463,629	3,392,104	3,455,392	3,427,866
	1.4	1.4	1.7	1.4
	0.2	0.3	0.4	0.3
	20.6	20.6	20.4	20.6
Sample Time, min. Volume, dscf	180 99.400	180 100.595	180 103.733	
Antimony (Sb) Concentration mg/dscm Emission rate lb/hr	<0.00111	<0.00088	<0.00268	<0.00156
	<0.000240	<0.000186	<0.000579	<0.000335
Arsenic (As) Concentration mg/dscm Emission rate lb/hr	<0.00089	<0.00088	<0.00085	<0.00087
	<0.000192	<0.000186	<0.000184	<0.000187
Barium (Ba) Concentration mg/dscm Emission rate lb/hr	<0.00178	<0.00505	<0.00170	<0.00284
	<0.000384	<0.001070	<0.000367	<0.000607
Beryllium (Be) Concentration mg/dscm Emission rate lb/hr	<0.00004	<0.00004	<0.00004	<0.00004
	<0.000009	<0.000009	<0.000009	<0.000009
Cadmium (Cd) Concentration mg/dscm Emission rate lb/hr	<0.00045	<0.00044	<0.00043	<0.00044
	<0.000097	<0.000094	<0.000093	<0.000094
Chromium (Cr) Concentration mg/dscm Emission rate lb/hr	0.00176	<0.00119	0.00191	<0.00162
	0.000380	<0.000251	0.000413	<0.000348

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 18 of 23

SECTIONFOUR

Test Results

TABLE 4-2 (CONTINUED). SUMMARY OF METALS TEST RESULTS – NORTH BAGHOUSE SERVING ROTARY FURNACE 1

RUN NO. TEST DATE TEST TIME	:	1 9/17/13 08:15 – 11:32	2 9/17/13 12:35 – 15:43	3 9/18/13 07:40 - 10:48	<u>Average</u>
Cobalt (Co) Concentration mg/dscm Emission rate lb/hr		<0.00045 <0.000097	<0.00044 <0.000094	<0.00043 <0.00093	<0.00044 <0.00094
Copper (Cu) Concentration mg/dscm Emission rate lb/hr		<0.00117 <0.000252	0.00191 0.000405	<0.00135 <0.000292	<0.00148 <0.000317
Lead (Pb) Concentration gr/dscf mg/dscm Emission rate lb/hr		<0.0000010 <0.00225 <0.000487	<0.0000004 <0.00088 <0.000186	0.0000013 0.00288 0.000621	<0.0000009 <0.00200 <0.000431
Manganese (Mn) Concentration mg/dscm Emission rate lb/hr		<0.00071 <0.000156	0.00066 0.000140	<0.00074 <0.000159	<0.00070 <0.000151
Nickel (Ni) Concentration mg/dscm Emission rate lb/hr		0.00154 0.000333	0.00153 0.000325	0.00167 0.000360	0.00158 0.000339
Phosphorus (P) Concentration mg/dscm Emission rate lb/hr		0.16013 0.034634	0.17024 0.036062	0.14727 0.031778	0.15921 0.0341 5 8
Selenium (Se) Concentration mg/dscm Emission rate lb/hr		<0.00488 <0.001055	<0.00088 <0.000186	<0.00417 <0.000899	<0.00331 <0.000713
Silver (Ag) Concentration mg/dscm Emission rate Ib/hr		<0.00045 <0.000097	<0.00044 <0.000094	<0.00047 <0.000101	<0.00045 <0.000097

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 19 of 23

SECTIONFOUR

Test Results

TABLE 4-2 (CONTINUED). SUMMARY OF METALS TEST RESULTS – NORTH BAGHOUSE SERVING ROTARY FURNACE 1

RUN NO. TEST DATE TEST TIME	* * * * * * * * * * * * * * * * * * * *	1 9/17/13 <u>08:15 – 11:32</u>	2 9/17/13 12:35 – 15:43	3 9/18/13 <u>07:40 – 10:48</u>	Average
Thallium (TI) Concentration					
mg/dscm		<0.00089	<0.00088	<0.00085	< 0.00087
Emission rate lb/hr		<0.000192	<0.000186	<0.000184	<0.000187
Zinc (Zn)					
Concentration mg/dscm Emission rate		0.01084	0.00870	0.00835	0.00930
lb/hr		0.002344	0.001842	0.001802	0.001996

SECTIONFOUR

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 20 of 23

Test Results

TABLE 4-3. SUMMARY OF PM TEST RESULTS – SOUTH BAGHOUSE SERVING ROTARY FURNACE 2

RUN NO. :	1	2	3	<u>Average</u>
TEST DATE :	9/19/13	9/19/13	9/20/13	
TEST TIME :	08:07 — 11:14	12:05 – 15:15	07:30 – 10:40	
Stack Gas Parameters Temperature, °F Velocity, av. ft/sec Volumetric flow, acfm Volumetric flow, scfm Volumetric flow, dscfh Moisture, av. % vol. Carbon Dioxide, av. % vol. Oxygen, av. % vol.	145.7	137.8	150.3	144.6
	58.5	59.9	56.7	58.4
	67,762	69,429	65,717	67,636
	57,981	60,190	56,208	58,126
	3,392,407	3,437,048	3,283,285	3,370,913
	2.5	4.8	2.6	3.3
	0.3	0.4	0.2	0.3
	20.5	20.4	20.7	20.5
Sample Time, min. Volume, dscf Total PM collected, mg Filterable PM collected, mg Condensable PM collected, mg* Isokinetic ratio, %	180 104.382 3.33 1.33 2.00 102.7	180 107.350 6.02 0.92 5.10 104.3	180 99.989 5.36 1.16 4.20 101.7	
Filterable Particulate Matter Concentration grains/dscf x 10 ⁻⁶ lb/dscf Emission rate lb/hr	0.00020	0.00013	0.00018	0.00017
	0.0281	0.0189	0.0256	0.0242
	0.0953	0.0649	0.0840	0.0814
Condensable Particulate Matter Concentration grains/dscf x 10 ⁻⁶ lb/dscf Emission rate lb/hr	0.00030	0.00073	0.00065	0.00056
	0.0422	0.1048	0.0926	0.0799
	0.1433	0.3599	0.3040	0. 2 691
Total Particulate Matter Concentration grains/dscf x 10 ⁻⁶ lb/dscf Emission rate lb/hr	0.00049	0.00087	0.00083	0.00073
	0.0703	0.1237	0.1182	0.1041
	0.2386	0.4249	0.3880	0.3505
Visible Emissions, min:sec	0:00			

^{*}Corrected for blank

SECTIONFOUR

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 21 of 23

Test Results

TABLE 4-4. SUMMARY OF METALS TEST RESULTS -SOUTH BAGHOUSE SERVING ROTARY FURNACE 2

RUN NO. :	1	2	3	<u>Average</u>
TEST DATE :	9/19/13	9/19/13	9/20/13	
TEST TIME :	<u>08:07 – 11:14</u>	12:05 - 15:15	<u>07:30 – 10:40</u>	
Stack Gas Parameters Temperature, °F Velocity, av. ft/sec Volumetric flow, acfm Volumetric flow, scfm Volumetric flow, dscfh Moisture, av. % vol. Carbon Dioxide, av. % vol. Oxygen, av. % vol.	149.8	141.5	155.0	145.6
	58.8	59.9	55.3	59.4
	68,126	69,403	64,040	68,765
	57,906	59,805	54,346	58,855
	3,376,899	3,411,128	3,164,613	3,394,014
	2.8	4,9	2.9	3.9
	0.3	0.4	0.2	0.4
	20.5	20.4	20.7	20.5
Sample Time, min. Volume, dscf	180 102.427	180 104.955	180 96.051	
Antimony (Sb) Concentration mg/dscm Emission rate lb/hr	<0.00086	<0.00084	<0.00097	<0.00089
	<0.000182	<0.000179	<0.000193	<0.000184
Arsenic (As) Concentration mg/dscm Emission rate lb/hr	<0.00086	<0.00084	<0.00092	<0.00087
	<0.000182	<0.000179	<0.000182	<0.000181
Barium (Ba) Concentration mg/dscm Emission rate lb/hr	0.00179	0.00470	<0.00315	<0.00321
	0.000378	0.000100	<0.000622	<0.000367
Beryllium (Be) Concentration mg/dscm Emission rate lb/hr	<0.00004	<0.00004	<0.00004	<0.000 04
	<0.000009	<0.000009	<0.000009	<0.000009
Cadmium (Cd) Concentration mg/dscm Emission rate lb/hr	<0.00043	<0.00128	0.00261	<0.00144
	<0.000092	<0.000272	0.000516	<0.000293
Chromium (Cr) Concentration mg/dscm Emission rate lb/hr	<0.00166	0.00081	0.00446	<0.00231
	<0.000350	0.000172	0.000881	<0.000468

North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

H. Kramer & Company: Chicago, IL

Page: 22 of 23

SECTIONFOUR

Test Results

TABLE 4-4 (CONTINUED). SUMMARY OF METALS TEST RESULTS -SOUTH BAGHOUSE SERVING ROTARY FURNACE 2

RUN NO. TEST DATE TEST TIME	:	1 9/19/13 08:07 – 11:14	2 9/19/13 12:05 – 15:15	3 9/20/13 <u>07:30 – 10:40</u>	Average
Cobalt (Co) Concentration mg/dscm Emission rate lb/hr		<0.00232 <0.000490	<0.00042 <0.000090	0.00689 0.001361	<0.00321 <0.000647
Copper (Cu) Concentration mg/dscm Emission rate lb/hr		0.00142 0.000300	0.00231 0.000493	0.00206 0.000407	0.00193 0.000400
Lead (Pb) Concentration gr/dscf mg/dscm Emission rate lb/hr		<0.0000013 <0.00305 <0.000644	0.0000042 0.00964 0.002053	0.0000044 0.01018 0.002011	<0.0000033 <0.00762 <0.001569
Manganese (Mn) Concentration mg/dscm Emission rate lb/hr		<0.00077 <0.000166	<0.00135 <0.000287	<0.00113 <0.000223	<0.00108 <0.000226
Nickel (Ni) Concentration mg/dscm Emission rate lb/hr		<0.00114 <0.000240	0.00096 0.000204	0.00124 0.000246	<0.00111
Phosphorus (P) Concentration mg/dscm Emission rate lb/hr		0.16741 0.035304	0.14277 0.030413	0.11592 0.022909	0.14204 0.029542
Selenium (Se) Concentration mg/dscm Emission rate lb/hr		<0.00208 <0.000438	<0.00293 <0.000623	<0.00578 <0.001142	<0.00359 <0.000735
Silver (Ag) Concentration mg/dscm Emission rate lb/hr		<0.00043 <0.000692	<0.00042 <0.000090	<0.00046 <0.000092	<0.00044 <0.000091

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Page: 23 of 23

Test Results

TABLE 4-4 (CONTINUED). SUMMARY OF METALS TEST RESULTS – SOUTH BAGHOUSE SERVING ROTARY FURNACE 2

RUN NO. TEST DATE	6 * *	1 9/19/13	2 9/19/13	3 9/20/13	
TEST TIME	*	08:07 - 11:14	<u>12:05 – 15:15</u>	07:30 - 10:40	Average
Thallium (TI) Concentration					
mg/dscm Emission rate		<0.00086	<0.00084	<0.00092	<0.00087
lb/hr		<0.000182	<0.000179	<0.000182	<0.000181
Zinc (Zn) Concentration					
mg/dscm Emission rate		0.01728	0.01173	0.03813	0.02238
lb/hr		0.003644	0.002500	0.007535	0.004560

H. Kramer & Company: Chicago, IL North and South Baghouse Stacks Test Dates: 9/17 - 9/20/13

Rotary Furnace 1: North Baghouse Stack Calculation Summaries and Field Data

SUMMARY OF PARTICULATE MATTER TEST RESULTS

Company : H. Kramer
Location : Chicago, IL
Source : North Baghouse

Test Run	:	1	2	3	
Test Date	:	9/17/2013	9/17/2013	9/18/2013	
Test Time	;	08:15 - 11:32	12:35 - 15:43	7:40 - 10:48	Average
STACK GAS		,			
Temperature, av. °F		111.6	132.5	130.3	124.8
Velocity, av. ft/sec		57.634	57.954	58.271	57.953
Volume flow, acfm		66,771	67,142	67,510	67,141
Volume flow, scfm		60,922	59,119	59,351	59,797
Volume flow, dscfm		60,407	57,995	58,233	58,878
Volume flow, scfh		3,655,304	3,547,162	3,561,072	3,587,846
Volume flow, dscfh		3,624,402	3,479,681	3,493,963	3,532,682
Moisture, av. % vol		0.85	1.90	1.88	1.54
CO ₂ , av. % vol, db		0.2	0.3	0.4	0.3
O ₂ , av. % vol, db		20.6	20.6	20.4	20.5
Sample Train Data					
Time, min		180.0	180.0	180.0	
Volume, dscf		107.102	110.678	107.094	
Volume, dscm		3.033	3.134	3.033	
Isokinetic Ratio, %		98.7	106.2	102.3	
Filterable PM collected, mg		annovicio al del Carlo del Car		glegd glewnys fon han en en was finn hid de hidd de hidd de the hidde hidd and hidd and hidde hidde hidde hidde	
Filterable PM collected, mg		1.92	0.25	1.11	1.09
Concentration					
gr/dscf		0.00028	0.00003	0.00016	0.00016
lb/dscf x 10 ⁻⁶		0.0395	0.0050	0.0229	0.0225
Emission rate					
lb/hr		0.1432	0.0173	0.0798	0.0801
Condensible PM collected, mg	**************************************	2.30	2.40	2.50	2.40
Concentration					
gr/dscf		0.00033	0.00033	0.00036	0.00034
lb/dscf x 10 ⁻⁵		0.0474	0.0478	0.0515	0.0489
Emission rate					
lb/hr		0.1716	0.1663	0.1798	0.1726
Total PM collected, mg	terrodusent militalitä (Milita <u>saatuus puodissa piraten yre</u> en moneren	4.22	2.65	3.61	3.49
Concentration					
gr/dscf		0.00061	0.00037	0.00052	0.00050
lb/dscf x 10 ⁻⁶		0.0869	0.0528	0.0743	0.0713
Emission rate					
lb/hr		0.3148	0.1837	0.2596	0.2527

A-1

ARI ENVIRONMENTAL, INC. USEPA METHODS 5/202 - TOTAL PM CALCULATION SUMMARY

COMPANY: H. Kramer LOCATION: Chicago, IL SOURCE: North Baghouse

TEST DATE: 9/17/13 RUN NUMBER: 1

11	. 1	7	***

		•			
V _m :	110.805	ft ³	Q _s :	60,407	dscfm
γ FACTOR:	0.988		T _s :	111.6	°F
P _{bar} ;	29.6	in.Hg	Runtime:	180	minutes
ΔH:	1.19	in.H₂O	V_s :	57.634	ft/sec
T _m :	75.5	°F	P _s :	29.55	in.Hg
V _{ic} :	19.4	mL	Noz. diam:	0.188	inches
M _n total:	4.2	mg			

CO₂: 0.20 % by volume O₂: 20.60 % by volume

> ENGLISH UNITS (29.92 in.Ha & 68 °F'

		(29.92 in.Hg & 6	
VOLUME OF SAMPLE @ STANDARD CONDITION	NS, DRY BAS			
$V_{mstd} = \left(\frac{528}{29.92}\right) \times V_{m} \times \gamma \left[\frac{P}{P}\right]$	$\frac{P_{\text{bar}} + \frac{\Delta H}{13.6}}{T_{\text{m}}}$		107.102	dscf
γ = 0.988				
VOLUME OF WATER IN SAMPLE @ STANDARD $V_{wstd} = 0.0$	CONDITIONS 04707 × V _{Ic}	=	0.913	scf
FRACTIONAL MOISTURE CONTENT OF STACK	GAS			
$B_{ws} = \frac{V_{wstd}}{V_{wstd} + V}$	v _{mstd} × 100	gang Malaji	0.85	%
PARTICULATE CONCENTRATION IN STACK GA	S ON A DRY	BASIS		
$C_s = (0.01543) \left(\frac{M_n}{V_{mstd}} \right)$	Total	=	0.00061	gr/dscf
$C_s' = (2.205 \times 10^{-6}) \left(\frac{M_n}{V_{mstd}} \right)$	C' _s Total	=	0.0869	x 10 ⁻⁶ lbs/dscf
EMISSION RATE $pmr = \left(\frac{C_s}{7000}\right)(Q_{std})(60)$	Total	1000	0.3148 1.379	lbs/hr ton/yr
ISOKINETIC SAMPLING RATE		-secondade Se Se ferre y er a	The second secon	
$\%ISO = \frac{(100)(T_s) \left[(0.002669 \times V_{lc}) + \left(\frac{V_m}{T_m} \right) (\gamma) \left(P_b - \frac{V_{lc}}{V_{lc}} \right) + \left(\frac{V_m}{V_{lc}} \right) (\gamma) \left(P_b - \frac{V_{lc}}{V_{lc}} \right) \right]}{(60)(V_s)(P_s)(A_n)}$	$ar + \left(\frac{\Delta H}{13.6}\right)$	alma anna	98.66	% I
$A_n = 0.000193 \text{ ft}^2$	Runtime =	180	minutes	

ARI ENVIRONMENTAL, INC. USEPA METHOD 5 - FILTERABLE PARTICULATE CALCULATION SUMMARY

COMPANY: H. Kramer LOCATION: Chicago, IL SOURCE: North Baghouse

TEST DATE: 9/17/13

RUN NUMBER: 1

INPUT					
V _m :	110.805	ft ³	$\mathbf{Q}_{\mathbf{s}}$:	60,407	dscfm
γ FACTOR:	0.988		T _s :	111.6	°F
P _{bar} :	29.6	in.Hg	Runtime:	180	minutes
ΔH:	1.19	in.H ₂ O	V _s :	57.634	ft/sec
T _m :	75.5	°F	P _s :	29.55	in.Hg
V _{ic} :	19.4	mL	Noz. diam:	0.188	inches
M _n front:	1.92	mg			
CO ₂ :	0.20	% by volume			
O ₂ :	20.60	% by volume			

ENGLISH UNITS

			(29.92 in.Hg & 6	8 °F)		
VOLUME OF SAMPLE @ STANDARD CONDITION	IS, DRY BASIS	}				
$V_{mstd} = \left(\frac{528}{29.92}\right) \times V_{m} \times \gamma \left[\frac{P_{b_{1}}}{29.92}\right] \times V_{m} \times \gamma \left[\frac{P_{b_{2}}}{29.92}\right] \times V_{m} \times \gamma \left[\frac{P_{b_{1}}}{29.92}\right] \times V_{m} \times \gamma \left[\frac{P_{b_{2}}}{29.92}\right] \times V_{m} \times \gamma \left[\frac{P_{b_{2}}}{29.92}\right]$	$\frac{\text{er} + \frac{\Delta H}{13.6}}{T_{\text{m}}}$	=	107.102	dscf		
$\gamma = 0.988$						
$\gamma = 0.988$ VOLUME OF WATER IN SAMPLE @ STANDARD (CONDITIONS			The second secon		
	04707 × V _{Ic}	Administration of the Control of the	0.913	scf		
FRACTIONAL MOISTURE CONTENT OF STACK O	SAS		Management of the state of the			
$B_{ws} = \frac{V_{wst}}{V_{wstd} + 1}$	$\frac{1d}{V_{mstd}} \times 100$	==	0.85	%		
PARTICULATE CONCENTRATION IN STACK GAS ON A DRY BASIS						
$C_s = (0.01543) \left(\frac{M_n}{V_{mstd}} \right)$	Total	=	0.00028	gr/dscf		
$C_s = (2.205 \times 10^{-6}) \left(\frac{M_n}{V_{mstd}} \right)$	C' _s Total	=	0.0395	x 10 ⁻⁶ lbs/dscf		
EMISSION RATE $pmr = \left(\frac{C_s}{7000}\right)$	(Q _{std})(60)		0.1432 0.6273	lbs/hr ton/yr		
			Maderson graphic graph strategy in state for the plant of the strategy of the			
ISOKINETIC SAMPLING RATE						
$\%ISO = \frac{(100)(T_s) \left((0.002669 \times V_{lc}) + \left(\frac{V_m}{T_m} \right) (\gamma) \left(P_{bar} \right) (\gamma) \left(P_{bar} \right)}{(60)(\theta)(V_s)(P_s)(A_n)} $	$+\left(\frac{\Delta H}{13.6}\right)$	pino APE	98.66	% I		
$A_n = 0.0001928 \text{ ft}^2$	Runtime =	180	minutes			

ARI ENVIRONMENTAL, INC. USEPA METHOD 202 - CONDENSIBLE PARTICULATE CALCULATION SUMMARY

COMPANY: H. Kramer LOCATION: Chicago, IL SOURCE: North Baghouse

TEST DATE: 9/17/13

A-4

TEST DATE: 9/ RUN NUMBER: 1	17/13					
INPUT				Q _s :	60,407	dscfm
	10.805	ft ³		T _s :	111.6	°F
	0.988			Runtime:	180	minutes
P _{bar} :	29.6	in.Hg		V _s ;	57.634	ft/sec
ΔH:	1.19	in.H₂O		P _s :	29.55	in.Hg
		-		~		
T _m :	75.5	°F		Noz. diam:		inches
V _{ic} :	19.4	mL		m _{ib} :	2.15	mg
	0.0000			m _{ob} :	0.90	mg
V _t :	0.00	mL				
m _r :	2.90	mg		i	ENGLISH UN	ITS
m _o :	1.40	mg		(29	9.92 in.Hg & 6	68 °F)
VOLUME OF SAMP	LE @ S	TANDARD CONDIT	IONS, DRY B	ASIS		
	V _{mstd}	$= \left(\frac{528}{29.92}\right) \times V_{m} \times \gamma \left[$	$\frac{P_{ber} + \frac{\Delta H}{13.6}}{T_{rn}}$	=	107.102	dscf
MASS OF AMMON	A CORF	RECTION				aramatakan kan da da da da da da 1964 - Papa aramata aramata aramata da
. Equa	ation #1	$m_c = 17.$	$03 \times V_T \times N$	×	0.00	mg
MASS OF THE FIEL	D BLA	νK	***************************************			And the second s
Equa	ation #2	m _{fb}	= m _{ib} + m _{ob}	=	3.05 2.00	mg mg @ max allowable
MASS OF INORGA	VIC CO	NDENSIBLE PM			- A Control of the Co	,
Equa	ition #3	m	$_{i}=m_{r}-m_{c}$	=	2.90	mg
TOTAL MASS OF C	ONDEN	SIBLE PM	**************************************			
Equa	ition #4	$m_{cpm} = m_i$	$+m_o^{}-m_{fb}^{}$		2.30	mg @ max. blank
TOTAL CONCENTR	ATION	OF CONDENSIBLE	PM - METRIC	UNITS	Martin Company of the	
Equa	tion #5	C _{ct}	$_{\rm orn} = \frac{m_{\rm cpm}}{V_{\rm m(std)}}$	1-954F Maries	0.0215	mg/dscf
TOTAL CONCENTR	ATION (OF CONDENSIBLE	PM - ENGLIS	HUNITS		
	C, = (0	0.01543)(C _{cpm})	Total	=	0.00033	gr/dscf
	$C_s = (2.3)$	205×10 ⁻⁶)(C _{opm})	C's Total	district galaxy	0.0474	x 10 lbs/dscf
EMISSION RATE		(C.)(0 VCO)		angangangangangangan menghammiki mencelikan melanga		
,	ринг	$= \left(\frac{C_s}{7000}\right)(Q_{std})(60)$	Total		0.1716 0.7515	lbs/hr ton/yr
ISOKINETIC SAMPL	ING RA	TE				
	0.00266	$9 \times V_{lc}) + \left(\frac{V_{m}}{T_{m}}\right) (\gamma) \left(F_{s})(\theta)(V_{s})(P_{s})(A_{n})$	$P_{\text{bar}} + \left(\frac{\Delta H}{13.6}\right)$	1	98.66	%
$\mathbf{A}_{n} = 0.$	00019 f	4 ² 2	Runtime =	180	minutes	

ARI ENVIRONMENTAL, INC. FLOW RATE CALCULATION SUMMARY

COMPANY: H. Kramer LOCATION: Chicago, IL **SOURCE**: North Baghouse **TEST DATE**: 9/17/2013

RUN NUMBER: 1

STACK TEMP:

BAROMETRIC: 29.6 in. Hg STATIC PRES: -0.65 in.H₂O STACK DIAM: 59.50 inches

CO₂: O₂: 0.20 % by volume 20.60 % by volume

SQ.RT ΔP: 0.9787 in.H₂O

111.6 °F

*			
DRY MOLECULAR WEIGHT OF STACK GAS			
$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2 + \%CO)$	garier essenti	28.86	lb/lb-mole
MOLECULAR WEIGHT OF STACK GAS, wet basis	and the state of t		
$M_s = M_d (1 - B_{ws}) + 18B_{ws}$	=	28.76	lb/lb-mole
PITOT TUBE COEFFICIENT			
C_p (from calibration curve or geometric specifications)	==	0.84	
AVERAGE VELOCITY HEAD OF STACK GAS, in. H₂O			
$\overline{\sqrt{\Delta P}} = \frac{1}{n} \sum_{i=1}^{n} \sqrt{\Delta p}$	widor: Wallet	0.9787	in. H₂O
AVERAGE ABSOLUTE STACK GAS TEMPERATURE			akanin dalah dalah dan dengan pengangan pen anan darah didikan dan delah darah darah dan darah sebagai pengananan
T _s = 111.6 °F + 460	==	571.6	°R
ABSOLUTE STACK GAS PRESSURE			
$P_{s} = P_{bar} + \frac{P_{state}}{136}$	×	29.55	in.Hg
STACK GAS VELOCITY			
$V_s = (85.49)(C_p)(avg\sqrt{\Delta P})\sqrt{\frac{T_s}{(P_s)(M_s)}}$	=	57.634	ft/sec
STACK GAS VOLUMETRIC FLOW RATE, actual $Q_s = 60 \times V_s \times A_s$	<u></u>	66,771	acfm
Stack Area = 19.309 ft ²			
STACK GAS VOLUMETRIC FLOW RATE, standard conditions, wet basis			
$Q_{stow} = \left(\frac{528}{29.92}\right) (Q_s) \left(\frac{P_s}{T_s}\right)$	áping Marii	60,922 3,655,304	scfm, wb scfh, wb
STACK GAS VOLUMETRIC FLOW RATE, standard conditions, dry basis			
$Q_{std} = \left(\frac{528}{29.92}\right) (Q_s) \left(\frac{P_s}{T_s}\right) (1 - B_{ws})$	opider obsolu	60,407 3,624,402	dscfm dscfh

ARI ENVIRONMENTAL, INC. MOISTURE CALCULATION SUMMARY

COMPANY: H. Kramer LOCATION: Chicago, IL SOURCE: North Baghouse TEST DATE: 9/17/2013

RUN NUMBER: 1

γ FACTOR: 0.988

BAROMETRIC: 29.60 in. Hg

STATIC PRES: -0.65 in.H₂O STACK TEMP: 111.6 °F

SQ.RT ΔP : 0.9787 in.H₂O ΔH : 1.19 in.H₂O STACK DIAM: 59.50 inches
METER VOLUME: 110.805 ft³

METER TEMP: 75.5 °F LIQUID COLL: 19.4 milliliters

CO₂: 0.20 % by volume O₂: 20.60 % by volume

> ENGLISH UNITS (29.92 in.Hg & 68 °F)

VOLUME OF SAMPLE

@ STANDARD CONDITIONS, DRY BASIS

$$V_{mstd} = \left(\frac{528}{29.92}\right) \times V_{m} \times \gamma \left[\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_{m}}\right] = 107.102$$

= 0.988

VOLUME OF WATER IN SAMPLE @ STANDARD CONDITIONS

$$V_{wstd} = 0.04707 \times V_{lc} =$$

0.913

scf

$$V_{lc} = 19.4 \text{ mL}$$

FRACTIONAL MOISTURE CONTENT OF STACK GAS AS MEASURED

$$B_{ws} = \frac{V_{wstd}}{V_{wstd} + V_{mstd}} = 0.0085$$

FRACTIONAL MOISTURE CONTENT OF STACK GAS @ SATURATION

$$B_{ws@saturation} = \frac{S.V.P.}{P_{bar} + \frac{P_{static}}{13.6}} = 0.0930$$

S.V.P. = 2.749 in. Hg

FRACTIONAL MOISTURE CONTENT USED IN CALCULATIONS

 $B_{ws} =$

0.0085

ARI ENVIRONMENTAL, INC. USEPA METHODS 5/202 - TOTAL PM CALCULATION SUMMARY

COMPANY: H. Kramer LOCATION: Chicago, IL SOURCE: North Baghouse

20.60 % by volume

TEST DATE: 9/17/13 **RUN NUMBER: 2**

INPUT	

 O_2 :

V _m :	115.745	ft ³	$\mathbf{Q_s}$:	57,995	dscfm
y FACTOR:	0.988		T _s :	132.5	°F
P _{bar} :	29.6	in.Hg	Runtime:	180	minutes
ΔH:	1.26	in.H₂O	V _s :	57.954	ft/sec
T _m :	81.40	°F	P _s :	29.56	ìn.Hg
V _{ic} :	45.6	mL.	Noz. diam:	0.188	inches
M _n total:	2.7	mg			
CO ₂ :	0.30	% by volume			

ENGLISH UNITS

$Volume \ of \ sample \ @ \ standard \ conditions, \ dry \ basis$ $V_{mstd} = \left(\frac{528}{29.92}\right) \times V_m \times \gamma \left[\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_m}\right] = 110.678 dscf$ $\gamma = 0.988$ $Volume \ of \ water \ in \ sample \ @ \ standard \ conditions \ V_{wstd} = 0.04707 \times V_{ic} = 2.146 scf$ $FRACTIONAL \ moisture \ content \ of \ stack \ gas$ $B_{ws} = \frac{V_{wstd}}{V_{wstd} + V_{mstd}} \times 100 = 1.90 \%$ $PARTICULATE \ concentration \ in \ stack \ gas \ on \ a \ dry \ basis$ $C_s = (0.01543) \left(\frac{M_n}{V_{mstd}}\right) \qquad Total = 0.00037 gr/dscf$ $C_s = (2.205 \times 10^{-6}) \left(\frac{M_n}{V_{mstd}}\right) \qquad C'_s \ Total = 0.0528 x \ 10^{-6} \ lbs/dscf$ $EMISSION \ rate$ $pmr = \left(\frac{C_s}{7000}\right) (Q_{std})(60) \qquad Total = 0.1837 lbs/hr \ 0.804 ton/yr$,	ENGLISH UNI	
$V_{mstd} = \left(\frac{528}{29.92}\right) \times V_m \times \gamma \left[\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_m}\right] = 110.678 dscf$ $\gamma = 0.988$ $VOLUME OF WATER IN SAMPLE @ STANDARD CONDITIONS \\ V_{wstd} = 0.04707 \times V_{ic} = 2.146 scf$ $FRACTIONAL MOISTURE CONTENT OF STACK GAS$ $B_{ws} = \frac{V_{wstd}}{V_{wstd} + V_{mstd}} \times 100 = 1.90 \%$ $PARTICULATE CONCENTRATION IN STACK GAS ON A DRY BASIS \\ C_s = (0.01543) \left(\frac{M_n}{V_{mstd}}\right) \qquad Total = 0.00037 gr/dscf$ $C_s' = (2.205 \times 10^{-6}) \left(\frac{M_n}{V_{mstd}}\right) \qquad C'_s \ Total = 0.0528 x \ 10^{-6} \ lbs/dscf$ $EMISSION RATE $ $pmr = \left(\frac{C_s}{7000}\right) (\Omega_{std}) (60) \qquad Total = 0.1837 lbs/hr$				29.92 in.Hg & 6	18 °F)
$\gamma = 0.988$ $VOLUME OF WATER IN SAMPLE @ STANDARD CONDITIONS \\ V_{wstd} = 0.04707 \times V_{lc} = 2.146 scf$ $FRACTIONAL MOISTURE CONTENT OF STACK GAS$ $B_{ws} = \frac{V_{wstd}}{V_{wstd} + V_{mstd}} \times 100 = 1.90 \%$ $PARTICULATE CONCENTRATION IN STACK GAS ON A DRY BASIS \\ C_s = (0.01543) \left(\frac{M_n}{V_{mstd}} \right)$ $C_s' = (2.205 \times 10^{-6}) \left(\frac{M_n}{V_{mstd}} \right)$ $C_s' = 7000 C_s' \text{ Total} = 0.0528 \text{x } 10^{-6} \text{ lbs/dscf}$ $C_s = (0.1837 \text{lbs/hr})$	VOLUME OF SAMPLE @ STANDARD CONDITI	IONS, DRY BAS	IS		
VOLUME OF WATER IN SAMPLE @ STANDARD CONDITIONS $V_{wetd} = 0.04707 \times V_{lc} = 2.146 \text{scf}$ FRACTIONAL MOISTURE CONTENT OF STACK GAS $B_{ws} = \frac{V_{wstd}}{V_{wstd} + V_{mstd}} \times 100 = 1.90 \%$ PARTICULATE CONCENTRATION IN STACK GAS ON A DRY BASIS $C_s = (0.01543) \left(\frac{M_n}{V_{mstd}} \right) \qquad \text{Total} = 0.00037 \text{gr/dscf}$ $C_s' = (2.205 \times 10^{-6}) \left(\frac{M_n}{V_{mstd}} \right) \qquad C_s' \text{ Total} = 0.0528 \text{x } 10^{-6} \text{ lbs/dscf}$ EMISSION RATE $pmr = \left(\frac{C_s}{7000} \right) (Q_{std}) (60) \qquad \text{Total} = 0.1837 \text{lbs/hr}$	_	$\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_{m}}$	Ξ	110.678	dscf
$V_{wstd} = 0.04707 \times V_{lc} \qquad = \qquad 2.146 \qquad \text{scf}$ $FRACTIONAL \ \text{MOISTURE CONTENT OF STACK GAS}$ $B_{ws} = \frac{V_{wstd}}{V_{wstd} + V_{mstd}} \times 100 \qquad = \qquad 1.90 \qquad \%$ $PARTICULATE \ \text{CONCENTRATION IN STACK GAS ON A DRY BASIS}$ $C_s = (0.01543) \left(\frac{M_n}{V_{mstd}} \right) \qquad \text{Total} \qquad = \qquad 0.00037 \text{gr/dscf}$ $C_s' = (2.205 \times 10^{-6}) \left(\frac{M_n}{V_{mstd}} \right) \qquad C_s' \ \text{Total} \qquad = \qquad 0.0528 \text{x } 10^{-6} \ \text{lbs/dscf}$ $EMISSION \ \text{RATE}$ $pmr = \left(\frac{C_s}{7000} \right) (Q_{std})(60) \qquad \text{Total} \qquad = \qquad 0.1837 \text{lbs/hr}$					
$B_{ws} = \frac{V_{wstd}}{V_{wstd} + V_{mstd}} \times 100 = 1.90 \%$ $PARTICULATE CONCENTRATION IN STACK GAS ON A DRY BASIS$ $C_s = (0.01543) \left(\frac{M_n}{V_{mstd}} \right) \qquad Total = 0.00037 gr/dscf$ $C_s' = (2.205 \times 10^{-6}) \left(\frac{M_n}{V_{mstd}} \right) \qquad C'_s \text{ Total} = 0.0528 \text{x } 10^{-6} \text{ lbs/dscf}$ $EMISSION RATE$ $pmr = \left(\frac{C_s}{7000} \right) (Q_{std})(60) \qquad Total = 0.1837 lbs/hr$				2.146	scf
PARTICULATE CONCENTRATION IN STACK GAS ON A DRY BASIS $C_s = (0.01543) \left(\frac{M_n}{V_{mstd}} \right) \qquad Total = 0.00037 gr/dscf$ $C'_s = (2.205 \times 10^{-6}) \left(\frac{M_n}{V_{mstd}} \right) \qquad C'_s \text{ Total} = 0.0528 \text{x } 10^{-6} \text{ lbs/dscf}$ EMISSION RATE $pmr = \left(\frac{C_s}{7000} \right) (Q_{std})(60) \qquad Total = 0.1837 \text{lbs/hr}$	FRACTIONAL MOISTURE CONTENT OF STAC	K GAS			
$C_{s} = (0.01543) \left(\frac{M_{n}}{V_{mstd}}\right) \qquad \text{Total} = 0.00037 \text{gr/dscf}$ $C_{s}' = (2.205 \times 10^{-6}) \left(\frac{M_{n}}{V_{mstd}}\right) \qquad C_{s}' \text{ Total} = 0.0528 \text{x } 10^{-6} \text{ lbs/dscf}$ $\text{EMISSION RATE} \qquad \text{pmr} = \left(\frac{C_{s}}{7000}\right) (Q_{std})(60) \qquad \text{Total} = 0.1837 \text{lbs/hr}$	$B_{ws} = \frac{V_{w}}{V_{wstd}}$	std × 100 V _{mstd}	=	1.90	%
$C_{s} = (0.01543) \left(\frac{M_{n}}{V_{mstd}} \right)$ $C_{s}' = (2.205 \times 10^{-6}) \left(\frac{M_{n}}{V_{mstd}} \right) \qquad C'_{s} \text{ Total} \qquad = \qquad 0.0528 \qquad \textbf{x} \ \textbf{10}^{-6} \ \textbf{lbs/dscf}$ $EMISSION RATE$ $pmr = \left(\frac{C_{s}}{7000} \right) (Q_{std})(60) \qquad \text{Total} \qquad = \qquad 0.1837 \qquad \textbf{lbs/hr}$	PARTICULATE CONCENTRATION IN STACK G	AS ON A DRY E	BASIS		
EMISSION RATE $pmr = \left(\frac{C_s}{7000}\right)(Q_{std})(60) \qquad Total = 0.1837 lbs/hr$	$C_s = (0.01543) \left(\frac{M_n}{V_{mstd}} \right)$	Total	=	0.00037	gr/dscf
$pmr = \left(\frac{\sigma_s}{7000}\right)(Q_{std})(60) \qquad Total = 0.1837 lbs/hr$	$C_s' = (2.205 \times 10^{-6}) \left(\frac{M_{rl}}{V_{mstd}} \right)$	C's Total		0.0528	x 10 ⁻⁶ lbs/dscf
	EMISSION RATE $pmr = \left(\frac{C_s}{7000}\right)(Q_{std})(60)$	Total	=		
ISOMNETIC SAMDLING DATE	ISOKINETIC SAMPLING RATE				
$\%ISO = \frac{(100)(T_s)\left[(0.002669 \times V_{lc}) + \left(\frac{V_m}{T_m}\right)(\gamma)\left(P_{bar} + \left(\frac{\Delta H}{13.6}\right)\right)\right]}{(60)(\theta)(V_s)(P_s)(A_n)} = 106.20 \% I$		Pbar $+\left(\frac{\Delta H}{13.6}\right)$	222	106.20	% I
$A_n = 0.000193 \text{ ft}^2$ Runtime = 180 minutes	$A_n = 0.000193 \text{ ft}^2$	Runtime =	180	minutes	

ARI ENVIRONMENTAL, INC. USEPA METHOD 5 - FILTERABLE PARTICULATE CALCULATION SUMMARY

COMPANY: H. Kramer LOCATION: Chicago, IL SOURCE: North Baghouse

TEST DATE: 9/17/13 **RUN NUMBER: 2**

	~	 -
N		Ŧ

and the second second		e-3	_		
V _m :	115.745	ft ³	Q_s :	57,995	dscfm
γ FACTOR:	0.988		T _s :	132.5	°F
P _{bar} :	29.6	in.Hg	Runtime:	180	minutes
ΔH:	1.26	in.H₂O	V _s :	57.954	ft/sec
T _m :	81.4	°F	P _s :	29.56	in.Hg
V _{tc} :	45.6	mL	Noz. diam;	0.188	inches
M _n front:	0.25	mg			
CO ₂ :	0.30	% by volume			
O ₂ :	20.60	% by volume			

ENGLISH UNITS

	(ENGLISH UN 29.92 in.Hg & 6	
VOLUME OF SAMPLE @ STANDARD CONDITIONS, DRY BAS			The second secon
$V_{mstd} = \left(\frac{528}{29.92}\right) \times V_{m} \times \gamma \left[\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_{m}}\right]$	=	110.678	dscf
γ = 0.988			
$\gamma = 0.988$ VOLUME OF WATER IN SAMPLE @ STANDARD CONDITIONS			
$V_{\text{wstd}} = 0.04707 \times V_{\text{ic}}$	-	2.146	scf
FRACTIONAL MOISTURE CONTENT OF STACK GAS			
$B_{ws} = \frac{V_{wstd}}{V_{wstd} + V_{mstd}} \times 100$	==	1.90	%
PARTICULATE CONCENTRATION IN STACK GAS ON A DRY E	BASIS	· · · · · · · · · · · · · · · · · · ·	
$C_s = (0.01543) \left(\frac{M_n}{V_{mstd}} \right)$ Total	= .	0.00003	gr/dscf
$C_s' = (2.205 \times 10^{-6}) \left(\frac{M_0}{V_{mstd}} \right)$ C_s' Total	=	0.0050	x 10 ⁻⁶ lbs/dscf
EMISSION RATE $pmr = \left(\frac{C_s}{7000}\right)(Q_{std})(60)$	- Control	0.0173 0.0759	lbs/hr ton/yr
ISOKINETIC SAMPLING RATE			
$\%ISO = \frac{(100)(T_s) \left[(0.002669 \times V_{IC}) + \left(\frac{V_m}{T_m} \right) (\gamma) \left(P_{bar} + \left(\frac{\Delta H}{13.6} \right) \right) \right]}{(60)(\theta)(V_s)(P_s)(A_n)}$	=	106.20	% I
$A_n = 0.0001928 \text{ ft}^2$ Runtime =	180	minutes	

ARI ENVIRONMENTAL, INC. USEPA METHOD 202 - CONDENSIBLE PARTICULATE CALCULATION SUMMARY

 Q_s :

57,995

dscfm

A-9

COMPANY: H. Kramer LOCATION: Chicago, IL SOURCE: North Baghouse

TEST DATE: 9/17/13 RUN NUMBER: 2

INPUT

V _m :	115.745	ft ³			T _s :	132.5	°F
Y FACTOR:	0.988				Runtime:	180	minutes
P _{bar} :	29.6	in.Hg			V _s :	57.954	ft/sec
ΔH:	1.26	in.H₂O			P _s :	29.56	in.Hg
T _m :	81.40	°F			Noz. diam:		inches
V _{ic} :	45.6	mL			m _{ib} :	2.15	mg
N:	0.0000	_			m _{ob} :	0.90	mg
V _t :	0.00	mL				5110110111111	
m _r :	3.40	mg				ENGLISH UN	
m _o :	1.00	mg	a count	iouo paya		9.92 in.Hg & 6	58 °F)
VOLUME OF SA	MPLE @ S	SIANDAK	D CONDITI	UNS, DRT B	ASIS		
	V_{mstd}	$=\left(\frac{528}{29.92}\right)$	$\bigg) \times V_m \times \gamma \Bigg[$	$\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_{m}}$		110.678	dscf
MASS OF AMMO				22 . V . N		0.00	
	quation #1		$m_c = 17.0$	$0.3 \times V_T \times N$	=	0.00	mg
MASS OF THE F	IELD BLA	NK				-	
E	quation #2		m _{fb} =	$= m_{ib} + m_{ob}$	=	3.05	mg
MASS OF INORG	SANIC CO	NIDENCID	LEDM			2.00	mg @ max allowable
WASS OF MORE	SANIC CO	NDENSID	LE PW				
	quation #3			$= m_r - m_e$	=	3.40	mg
TOTAL MASS OF	F CONDEN	ISIBLE P	M				
E	quation #4		m _{cpm} = m _i	+ m _o - m _{fb}	=	2.40	mg @ max. blank
TOTAL CONCEN	TRATION	OF CON	DENSIBLE	PM - METRIC	UNITS	Company of the second s	
E	quation #5		$C_{\scriptscriptstyle{\mathrm{cp}}}$	$_{m} = \frac{m_{cpm}}{V_{m(std)}}$		0.0217	mg/dscf
TOTAL CONCEN	TRATION	OF COND	DENSIBLE I	PM - ENGLIS	H UNITS		
	C _s = (0.01543)	(C_{cpm})	Total	22	0.00033	gr/dscf
	C' _s = (2.	205×10⁻	$^{e})(C_{cpm})$	C's Total	25	0.0478	x 10~ lbs/dscf
EMISSION RATE	pmr	$= \left(\frac{C_s}{7000}\right)$	(Q _{std})(60)	Total		0.1663 0.7285	lbs/hr ton/yr
ISOKINETIC SAN	PLING RA	ATE		appropriate processing and the second and the secon	ACAPTER SAN TO S		
(100)(T _s %ISO = ———		$\frac{69 \times V_{lc}) + 60}{60} = \frac{60}{V_s}$		$P_{\text{bar}} + \left(\frac{\Delta H}{13.6}\right)$	To the state of th	106.20	% I
A _n =	0.00019	ft ²	- Germani da de manistra de la destra de la d	Runtime =	180	minutes	

ARI ENVIRONMENTAL, INC. FLOW RATE CALCULATION SUMMARY

COMPANY: H. Kramer LOCATION: Chicago, IL SOURCE: North Baghouse TEST DATE: 9/17/2013

RUN NUMBER: 2

BAROMETRIC:

29.6 in. Hg

STACK DIAM:

59.50 inches

STATIC PRES:

-0.5 in.H₂O

CO₂:

O₂:

0.30 % by volume 20.60 % by volume

STACK TEMP: 132.5 °F SQ.RT ΔP: 0.9652 in.H₂O

0.3002 may			
DRY MOLECULAR WEIGHT OF STACK GAS			
$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2 + \%CO)$	Motor Make	28.87	lb/lb-mole
MOLECULAR WEIGHT OF STACK GAS, wet basis	***********	navide der som i diktibili al edit diktivation konstruente de de edit diktivation i distribution de edit distribut	
$M_s = M_d \left(1 - B_{ws} \right) + 18B_{ws}$	=	28.67	lb/lb-mole
PITOT TUBE COEFFICIENT			
C _p (from calibration curve or geometric specifications)	***	0.84	
AVERAGE VELOCITY HEAD OF STACK GAS, in. H ₂ O			
$\overline{\sqrt{\Delta P}} = \frac{1}{n} \sum_{i=1}^{n} \sqrt{\Delta p}$	=	0.9652	in. H₂O
AVERAGE ABSOLUTE STACK GAS TEMPERATURE			
T _s = 132.5 °F + 460	none home	592.5	°R
ABSOLUTE STACK GAS PRESSURE			
$P_{s} = P_{bar} + \frac{P_{static}}{13.6}$	eponi readi	29.56	in.Hg
STACK GAS VELOCITY			
$V_s = (85.49)(C_p)(avg\sqrt{\Delta P})\sqrt{\frac{T_s}{(P_s)(M_s)}}$	=	57.954	ft/sec
STACK GAS VOLUMETRIC FLOW RATE, actual ${\rm Q_s} = 60 \times {\rm V_s} \times {\rm A_s}$		67,142	acfm
Stack Area = 19.309 ft ²			
STACK GAS VOLUMETRIC FLOW RATE, standard conditions, wet basis		a ninn a marann agu gu a' a fear lean ann ann an dean a chliain agus ann a' de lean	
$Q_{stdw} = \left(\frac{528}{29.92}\right) (Q_s) \left(\frac{P_s}{T_s}\right)$	sales Anne	59,119 3,547,162	scfm, wb scfh, wb
STACK GAS VOLUMETRIC FLOW RATE, standard conditions, dry basis			
$Q_{std} = \left(\frac{528}{29.92}\right)(Q_s)\left(\frac{P_s}{T_s}\right)(1 - B_{ws})$	=	57,995 3,479,681	dscfm dscfh

ARI ENVIRONMENTAL, INC. MOISTURE CALCULATION SUMMARY

COMPANY: H. Kramer LOCATION: Chicago, IL SOURCE: North Baghouse TEST DATE: 9/17/2013

RUN NUMBER: 2

 γ FACTOR:
 0.988
 STACK DIAM:
 59.50 inches

 BAROMETRIC:
 29.60 in. Hg
 METER VOLUME:
 115.745 ft³

 STATIC PRES:
 -0.50 in.H₂O
 METER TEMP:
 81.4 °F

STATIC PRES: -0.50 in.H₂O METER TEMP: 81.4 °F STACK TEMP: 132.5 °F LIQUID COLL: 45.6 milliliters

SQ.RT ΔP : 0.9652 in.H₂O CO₂: 0.30 % by volume ΔH : 1.26 in.H₂O O₂: 20.60 % by volume

ENGLISH UNITS

$\begin{array}{c} \text{VOLUME OF SAMPLE}\\ \text{@ STANDARD CONDITIONS, DRY BASIS} \\ \\ V_{\text{mstd}} = \left(\frac{528}{29.92}\right) \times V_{\text{m}} \times \gamma \left[\frac{P_{\text{bar}} + \frac{\Delta H}{13.6}}{T_{\text{m}}}\right] &= 110.678 \quad \text{dscf} \\ \\ \gamma = 0.988 \\ \\ \text{VOLUME OF WATER IN SAMPLE}\\ \text{@ STANDARD CONDITIONS} \\ \\ V_{\text{wstd}} = 0.04707 \times V_{\text{lc}} &= 2.146 \quad \text{scf} \\ \\ V_{\text{lc}} = 45.6 \text{ mL} \end{array}$

FRACTIONAL MOISTURE CONTENT OF STACK GAS AS MEASURED

$$B_{ws} = \frac{V_{wstd}}{V_{wstd} + V_{mstd}} = 0.0190$$

FRACTIONAL MOISTURE CONTENT OF STACK GAS @ SATURATION

$$B_{ws@saturation} = \frac{S.V.P.}{P_{bar} + \frac{P_{static}}{13.6}} = 0.1657$$

FRACTIONAL MOISTURE CONTENT USED IN CALCULATIONS

 $B_{ws} = 0.0190$

ARI ENVIRONMENTAL, INC. USEPA METHODS 5/202 - TOTAL PM CALCULATION SUMMARY

COMPANY: H. Kramer LOCATION: Chicago, IL SOURCE: North Baghouse

TEST DATE: 9/18/13 **RUN NUMBER: 3**

INPUT

V _m :	111.685	ft ³	Q_s :	58,233
γ FACTOR:	0.988		T _s :	130.3
P _{bar} ;	29.45	in.Hg	Runtime:	180
ΔH:	1.17	in.H₂O	V _s :	58.271
T _m :	77.04	°F	P _s :	29.41
V _{ic} :	43.7	mL	Noz. diam:	0.188
M _n total:	3.6	mg		
CO ₂ :	0.40	% by volume		
O ₂ ;	20.40	% by volume		

ENGLISH LINITS

dscfm

minutes

ft/sec

in.Hg inches

٥F

		(ENGLISH UN 29.92 in.Hg & 6	
VOLUME OF SAMPLE @ STANDARD CONDITION	IS, DRY BAS			
$V_{mstd} = \left(\frac{528}{29.92}\right) \times V_{m} \times \gamma \left[\frac{P_{ba}}{P_{ba}}\right]$ $\gamma = 0.988$	$\frac{\Delta H}{T_{m}}$	3 2	107.094	dscf
VOLUME OF WATER IN SAMPLE @ STANDARD O	CONDITIONS	<u> </u>		
V _{wstd} = 0.04		=	2.057	scf
FRACTIONAL MOISTURE CONTENT OF STACK G	GAS			
$B_{ws} = \frac{V_{wstd}}{V_{wstd} + V_{m}}$	1840		1.88	%
PARTICULATE CONCENTRATION IN STACK GAS	ON A DRY E	BASIS		
$C_s = (0.01543) \left(\frac{M_o}{V_{mstd}} \right)$	Total	=	0.00052	gr/dscf
$C_s = (2.205 \times 10^{-6}) \left(\frac{M_n}{V_{mstd}} \right)$	C's Total	=	0.0743	x 10 ⁻⁶ lbs/dscf
EMISSION RATE $pmr = \left(\frac{C_s}{7000}\right)(Q_{std})(60)$	Total		0.2596 1.137	lbs/hr ton/yr
ISOKINETIC SAMPLING RATE				***************************************
$\%ISO = \frac{(100)(T_s) \left[(0.002669 \times V_{lc}) + \left(\frac{V_m}{T_m} \right) (\gamma) \left(P_{bar} - \frac{V_{lc}}{V_{lc}} \right) \right]}{(60)(\theta)(V_s)(P_s)(A_n)}$	$+\left(\frac{\Delta H}{13.6}\right)$	竝	102.34	% I
$A_n = 0.000193 \text{ ft}^2$	untime =	180	minutes	

ARI ENVIRONMENTAL, INC. USEPA METHOD 5 - FILTERABLE PARTICULATE CALCULATION SUMMARY

COMPANY: H. Kramer LOCATION: Chicago, IL SOURCE: North Baghouse

TEST DATE: 9/18/13 RUN NUMBER: 3

	-	-

IIII O I					
V _m :	111.685	ft ³	Q_s :	58,233	dscfm
γ FACTOR:	0.988		T _s :	130.3	°F
P _{bar} :	29.45	in.Hg	Runtime:	180	minutes
ΔH:	1.17	in.H₂O	V _s :	58.271	ft/sec
T _m :	77.0	°F	P _s :	29.41	in.Hg
V _{ic} :	43.7	mL	Noz. diam:	0.188	inches
M _n front:	1.11	mg			
CO ₂ :	0.40	% by volume			
O ₂ :	20.40	% by volume			

ENGLISH UNITS (29.92 in Ha & 68 °F

		(29.92 in.Hg & 6	8 °F)
VOLUME OF SAMPLE @ STANDARD CONDITION	NS, DRY BASI	S		
$V_{mstd} = \left(\frac{528}{29.92}\right) \times V_{m} \times \gamma \left[\frac{P_{b}}{T}\right]$	$\frac{\Delta H}{T_{\rm m}}$	==	107.094	dscf
γ = 0.988				
VOLUME OF WATER IN SAMPLE @ STANDARD Vwstd = 0	CONDITIONS 0.04707 × V _{ic}	==	2.057	scf
FRACTIONAL MOISTURE CONTENT OF STACK	GAS			
$B_{ws} = \frac{V_{w}}{V_{wstd}}$	v _{mstd} × 100	=	1.88	%
PARTICULATE CONCENTRATION IN STACK GAS	ON A DRY B	ASIS		
$C_{\epsilon} = (0.01543) \left(\frac{M_{n}}{V_{mstd}} \right)$	Total	=	0.00016	gr/dscf
$C_s' = (2.205 \times 10^{-6}) \left(\frac{M_n}{V_{mstd}} \right)$	C's Total	=	0.0229	x 10 ⁻⁶ lbs/dscf
EMISSION RATE $pmr = \left(\frac{C_s}{7000}\right)$	(Q _{sd})(60)		0.0798 0.3496	lbs/hr ton/yr
		ndgydys Sanak Albanau (1880) ac dd Sanak ac Gallanna ac Gallanna ac Gallanna ac Gallanna ac Gallanna ac Gallann		
ISOKINETIC SAMPLING RATE				
%ISO = $\frac{(100)(T_s)\left[(0.002669 \times V_{lc}) + \left(\frac{V_m}{T_m}\right)(\gamma)\left(P_{ba}\right)\right]}{(60)(\theta)(V_s)(P_s)(A_n)}$	$r + \left(\frac{\Delta H}{13.6}\right)$	=	102.34	%1
$A_n = 0.0001928 \text{ ft}^2$	Runtime =	180	minutes	

ARI ENVIRONMENTAL, INC. USEPA METHOD 202 - CONDENSIBLE PARTICULATE CALCULATION SUMMARY

COMPANY: H. Kramer LOCATION: Chicago, IL SOURCE: North Baghouse

TEST DATE: 9/18/13

A-14

RUN NUMBER						
INPUT				Q _s :	58,233	dscfm
V _m :	111.685	ft ³		T _s :	130.3	°F
Y FACTOR:	0.988			Runtime:	180	minutes
P _{bar} :	29.45	in.Hg		V _s :	58.271	ft/sec
ΔH:	1.17	in.H₂O		P _s :	29.41	in.Hg
T _m :	77.04	°F		Noz. diam:	0.188	inches
V _{ic} :	43.7	mL		m _{lb} :	2.15	mg
N:	0.0000			m _{ob} :	0.90	mg
V _t :	0.00	mL				
m _r :	3.55	mg			ENGLISH UN	ITS
m _o :	0.95	mg		(29	.92 in.Hg &	68 °F)
VOLUME OF S	AMPLE @ S	STANDARD CONDIT	TIONS, DRY B	ASIS		
		$= \left(\frac{528}{29.92}\right) \times V_{m} \times \gamma$	$\left[\frac{P_{ber} + \frac{\Delta H}{13.6}}{T_{m}}\right]$	=	107.094	dscf
MASS OF AMM	ONIA CORI	RECTION				
1	Equation #1	$m_{e} = 17$	$N \times V_{\rm T} \times 80$	=	0.00	mg
MASS OF THE	FIELD BLA	NK				
	Equation #2		$= m_{ib} + m_{ob}$	=	3.05 2.00	mg mg @ max allowable
MASS OF INOR	GANIC CO	NDENSIBLE PM				
E	Equation #3	m	$n_i = m_r - m_c$	12	3.55	mg
TOTAL MASS C	F CONDEN	ISIBLE PM			-	
Ε	Equation #4	m _{cpm} = m	$_{i}+m_{o}-m_{fb}$	=	2.50	mg @ max. blank
TOTAL CONCE	NTRATION	OF CONDENSIBLE	PM - METRIC	UNITS		
	Equation #5	C	$_{pm} = \frac{m_{cpm}}{V_{m(std)}}$	gone' steri	0.0233	mg/dscf
TOTAL CONCE	NTRATION	OF CONDENSIBLE	PM - ENGLIS	H UNITS		
	$C_s = (0$	0.01543)(C _{opm})	Total	=	0.00036	gr/dscf
	$C_s = (2.$	$205 \times 10^{-6})$ $\left(C_{cpm}\right)$	C' _s Total	=	0.0515	x 10 [™] lbs/dscf
EMISSION RATE	endralmatical de sentralman de sentralma de sentralma de sentralma de sentralma de sentralma de sentralma de s Sentralma de sentralma d	(C)	***************************************			www.ww.enfenfeniaminis fallishage-genempag shickenshirelight <u>da fallatifangi yunifaniyi iye-qabi</u> eni e-qa
	pmr	$= \left(\frac{C_s}{7000}\right) (Q_{std})(60)$	Total	=	0.1798 0.7875	lbs/hr ton/yr
ISOKINETIC SAI	MPLING RA	TE.	nden belain ann de lithe ann an ann an ann ann ann ann ann ann			
(100)(T	s) (0.00266 (6	$\frac{9 \times V_{lc}) + \left(\frac{V_{m}}{T_{m}}\right) (\gamma) \left(\frac{V_{m}}{V_{lc}}\right) (\gamma) \left($	$P_{\text{bar}} + \left(\frac{\Delta H}{13.6}\right)$	11	102.34	% I
A _n =	0.00019 f	ft ²	Runtime =	180 r	minutes	

ARI ENVIRONMENTAL, INC. FLOW RATE CALCULATION SUMMARY

COMPANY: H. Kramer LOCATION: Chicago, IL.

SOURCE: North Baghouse TEST DATE: 9/18/2013

RUN NUMBER: 3

BAROMETRIC: STATIC PRES: 29.45 in. Hg

STACK DIAM:

59.50 inches

STACK TEMP: 130.3 °F

-0.55 in.H₂O

CO₂: 0.40 % by volume O₂: 20.40 % by volume

SQ.RT ΔP : 0.9699 in.H₂O

=	28.88	lb/lb-mole
=	28.67	lb/lb-mole
	ann mahnusi makasin dalipa para pamanananin sahasin da da sahasi bah	
=	0.84	
=	0.9699	in. H₂O
=	590.3	°R

=	29.41	in.Hg
		g
=	58.271	ft/sec
==	67,510	acfm
=	59,351 3,561,072	scfm, wb scfh, wb
		and the second s
=	58,233 3,493,963	dscfm dscfh
		= 28.67 = 0.84 = 0.9699 = 590.3 = 29.41 = 58.271 = 67,510 = 59,351 3,561,072

ARI ENVIRONMENTAL, INC. MOISTURE CALCULATION SUMMARY

COMPANY: H. Kramer LOCATION: Chicago, IL SOURCE: North Baghouse TEST DATE: 9/18/2013

RUN NUMBER: 3

y FACTOR: BAROMETRIC: 0.988 29.45 in. Hg

STACK DIAM: METER VOLUME: 111.685 ft3

59.50 inches

STATIC PRES: STACK TEMP: -0.55 in.H₂O 130.3 °F

METER TEMP: LIQUID COLL:

77.0 °F 43.7 milliliters

SQ.RT ΔP :

0.9699 in.H2O

CO₂:

0.40 % by volume

ΔΗ:

1.17 in.H₂O

 O_2 :

20.40 % by volume

ENGLISH UNITS (29.92 in.Hg & °F)

VOLUME OF SAMPLE

@ STANDARD CONDITIONS, DRY BASIS

$$V_{metd} = \left(\frac{528}{29.92}\right) \times V_{m} \times \gamma \left[\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_{m}}\right] =$$

107.094

0.988

VOLUME OF WATER IN SAMPLE

@ STANDARD CONDITIONS

$$V_{wstd} = 0.04707 \times V_{lc} =$$

2.057

scf

$$V_{lc} =$$

43.7 mL

FRACTIONAL MOISTURE CONTENT OF STACK GAS AS MEASURED

$$B_{ws} = \frac{V_{wstd}}{V_{wstd} + V_{mstd}} =$$

0.0188

FRACTIONAL MOISTURE CONTENT OF STACK GAS @ SATURATION

$$B_{ws@saturation} = \frac{S.V.P.}{P_{bar} + \frac{P_{static}}{13.6}} =$$

0.1539

S.V.P. =

4.525 in. Hg

FRACTIONAL MOISTURE CONTENT USED IN CALCULATIONS

 $B_{ws} =$

0.0188

SUMMARY OF TEST RESULTS

TABLE COMPANY LOCATION SOURCE TEST DATE RUN NO	: : : : : : : : : : : : : : : : : : : :	Lead Emission H. Kramer Chicago, IL North Baghous 9/17/2013	se 9/17/2013 2	9/18/2013 3	
TEST TIME		08:15 - 11:32	12:35 - 15:43	07:40 - 10:48	Average
Stack Gas Parameters					
Temperature, °F Velocity, av. ft/sec Volumetric flow, acfm Volumetric flow, scfm Volumetric flow, dscfh Moisture, av. % vol Carbon Dioxide, av. % vol Oxygen, av. % vol		114.0 55.6 64,445 58,547 3,463,629 1.4 0.2 20.6	135.8 56.6 65,529 57,355 3,392,104 1.4 0.3 20.6	133.7 57.8 66,993 58,562 3,455,392 1.7 0.4 20.4	124.9 56.1 64,987 57,951 3,427,866 1.4 0.3 20.6
Sample					
Time, min Volume, dscf Volume, dscm Front Half Lead, ug Back Half Lead, ug Total Lead, ug Isokinetic Ratio, %		180.0 99.400 2.815 5.088 <1.250 <6.338 96.9	180.0 100.595 2.849 <1.250 <1.250 <2.500 100.1	180.0 103.733 2.938 5.760 2.690 8.450 101.4	101.242 2.867 <4.033 <1.730 <5.763 99.5
Lead Emissions					
Concentration gr/dscf mg/dscm x 10 ⁻⁶ lb/dscf Emission Rate		<0.0000010 <0.00225 <0.00014	<0.0000004 <0.00088 <0.00005	0.0000013 0.00288 0.00018	<0.0000009 <0.00200 <0.00013
lb/hr		<0.000487	<0.000186	0.000621	<0.000431

Visible Emissions (Method 22) # of minutes:sec with visible emissions

0:00

USEPA Method 29 Metals Emissions Summary

COMPANY

H. Kramer

LOCATION Chicago, IL

SOURCE TEE DATE	North Baghouse	9/17/2	2013			9/17/2	2013			9/18/2	2013			
The same of the sa	1	4	.013			2				3		1	Avera	ane
TESPOONE	and the second	08:15 -	11:32			12:35 -	15-43			07:40 -	10:4R		*****	.3.
Metals Sample	-	00,13 -	11.32			. 1,				01.40	.0.10	ĺ		
Time, min		180	. 0			180	10			180	1.0	1		
Volume, dscf	}	99.4		1		100.		1		103.		1		1
Isokinetic Ratio, %		96				100				101				1
Metals Emissions													Average	Average
Media Cinianona	Mass	Concentration	Concentration	Emission Rate	Mass	Concentration	Concentration	Emission Rate	Mass	Concentration	Concentration	Emission Rate	Concentration	Emission Rate
Analyte	ug	mg/dscm	x10° lb/dscf	lb/hr	սց	mg/dscm	x10° lb/dscf	tb/hr	ug	mg/dscm	x10-9 lb/dscf	lb/hr	mq/dscm	lb/hr
Antimony	<3.120	< 0.00111	<0.069	<0.000240	<2.500	<0.00088	<0.056	< 0.000186	<7.880	<0.00268	<0.168	< 0.000579	<0.00156	< 0.000335
Arsenic	<2,500	< 0.00089	< 0.055	< 0.000192	<2.500	<0.00088	< 0.055	<0.000186	<2.500	<0.00085	< 0.053	< 0.000184	< 0.00087	<0.000187
Barium	<5.000	< 0.00178	< 0.111	<0.000384	<14.390	<0.00505	< 0.315	<0.001070	<5.000	< 0.00170	<0.108	< 0.000367	< 0.00284	< 0.000607
Beryllium	<0.120	< 0.00004	< 0.003	<0.000009	<0.120	< 0.00004	<0.003	<0.000009	<0.120	< 0.00004	< 0.003	<0.000009	< 0.00004	<0.000009
Cadmium	<1.260	< 0.00045	< 0.028	< 0.000097	<1,260	< 0.00044	<0.028	< 0.000094	<1,260	< 0.00043	< 0.027	<0.000093	<0.00044	< 0.000094
Chromium	4.950	0.00176	0.110	0.000380	<3.380	< 0.00119	< 0.074	< 0.000251	5.620	0.00191	0.119	0.000413	< 0.00162	<0.000348
Cobalt	<1.260	< 0.00045	< 0.028	< 0.000097	<1.260	< 0.00044	<0.028	< 0.000094	<1.260	< 0.00043	< 0.027	<0.000093	<0.00044	<0.000094
Copper	<3.280	< 0.00117	< 0.073	< 0.000252	5.450	0.00191	0.119	0.000405	<3.980	< 0.00135	<0.085	<0.000292	< 0.00148	<0.000317
Lead	<6.338	< 0.00225	< 0.141	< 0.000487	<2.500	<0.00088	<0.055	<0.000186	8.450	0.00288	0.180	0.000621	<0.00200	<0.000431
Manganese	<2.030	< 0.00071	< 0.045	< 0.000156	1.880	0.00066	0.041	0.000140	<2.160	<0.00074	<0.046	< 0.000159	<0.00070	<0.000151
Nickel	4.340	0.00154	0.096	0.000333	4.370	0.00153	0.096		4.900			1	0.00158	0.000339
Phosphorus	450.766	0.16013	9.999	0.034634	485.002	0.17024	10.631	0.036062	432.645	0.14727	9.197	0.031778	0.15921	0.034158
Selenium	<13.730	<0.00488	< 0.305	< 0.001055	<2.500	\$8000.0>	<0.055		<12.240				<0.00331	<0.000713
Silver	<1.260	< 0.00045	<0.028	< 0.000097	<1.260	<0.00044							<0.00045	<0.000097
Thallium	<2.500					<0.00088			<2.500				<0.00087	<0.000187
Zinc	30.510	0.01084	0.677	0.002344	24.780	0.00870	0.543	0.001842	24.540	0.00835	0.522	0.001802	0.00930	0.001996

USEPA Method 29 Metals Emissions Calculation Summary

Client: Location: Source: Date: Run #: H. Kramer Chicago, It. North Baghouse 9/17/2013 1

> <0.000487 <0.000097

lb/hr Lead (Pb) lb/hr Cobalt (Co)

Test Data Input		Metals Laborator	y Analysis Weights (Mt)	< Values =Below I	MDL
Barometric pressure (P _{ter}):	29.60 inches Hg	T		Manganese (Mn):	<2.03 uç
Stack pressure (P _e):	29,55 inches Hg Abs.	Antimony (Sb):	<3.12 ug		
Test length (0):	180.0 minutes	Arsenic (As):	<2.50 ug	Nickel (Ni):	4.34 00
Sample nozzie diameter (D _s):	0.1870 inches	Barium (Ba):	<5.00 ug	Phosphorus (P):	450.77 ug
Sample nozzie area (Sb):	0.000191 ft ³	Beryllium (Be):	<0.12 ug		
Stack temperature (T _e):	114.0 °F	Cadmium (Cd):	<1.26 ug	Selenium (Se):	<13.73 ug
Volume metered (V _{ests}):	99.400 dscf			Silver (Ag):	<1.26 US
Stack gas velocity (V _s):	55.626 ft/sec	Chromium (Cr):	4.95 ug	Thallium (TI):	<2.50 uç
Stack gas volumetric flow (Q _{std}):	3,463,629 dscfb	Cobalt (Co):	<1.26 ug	Zinc (Zn):	30.51 ug
Fractional Moisture content (B.,.):	0.0140 %	Copper (Cu):	<3.28 ug		
		Lead (Pb):	<6.34 ug		
		1			

Fractional Moisture	content (B):	0.014) %	Copper (Cu):	<3.20	3 ug		
				Lead (Pb):	<6,3*	l ug		
Sample calculati	ons @ standar	d conditions (2	9.92 inches Hg,	68.0 °F):				
Percent Isokinetic:								
$\% sokinetic = \frac{0.0}{P_s}$	$945 \times V_{\text{matd}} \times (T_s \times V_s \times \theta \times A_n \times (T_s $. +460) 1-B _{**})		*	96.91	% Isokinetic		
Metals concentration								
O, =	M, V _{med} 35,31dscf / d	scm)		222	<0.00071	mg/dscn	n Manganese (Mn)	
	<0.00111	-	Antimony (Sb)	-				
<u>~</u>	<0.00089		Arsenic (As)		0.00154	maldeen	Nickel (Ni)	
22	< 0.00178		Barium (Ba)	=	0.16013		Phosphorus (P)	
222	<0.00004		Beryllium (Be)	==	0.10013	ili graven	· · nosphoras (r)	
=	<0.00045		Cadmium (Cd)	=	<0.00488	maldscri	Selenium (Se)	
#	0.00176		Chromium (Cr)	*	< 0.00045		Silver (Ag)	
=	< 0.00117		Copper (Cu)	***	<0.00089	_	Thaffium (Ti)	
	4.44.11		achbai (-u)	=	0.01084	•	Zinc (Zn)	
-	< 0.00225	ma/dscm	Lead (Pb)	==				
#	< 0.00045		Cobalt (Co)	=				
letals concentration	/ x10* lb/dscfl:		,					
			(2.20)	10 40 V				
			C's = 2.20	$\frac{5 \times 10^{-9} \text{lb}}{\mu \text{g}} \times \text{M}_{\text{t}}$				
				=	<0.045	x 10" lb/dscf	Manganese (Mn)	
=	<0.069		Antimony (Sb)	22		44-91-11-1-1		
ta	<0.055	x 10° lb/dscf		=		x 10" lb/dscf		
=	<0.111	x 10" lb/dscf		n	9.999	x 10 * lb/dsct	Phosphorus (P)	
	<0.003		Beryllium (Be)	=	.0.000	40.94 (46	0.1.1.10.1	
=	<0.028		Cadmium (Cd)	=			Selenium (Se)	
**	0.110		Chromium (Cr)	=		x 10 1b/dscf		
fm:	<0.073	x 10" lb/dscf	Capper (Cu)	=		x 10" lb/dscf		
=	<0.141	40" 16 (June	t and (DE)	2 =	0.677	x 10" lb/dscf	Zinc (Zn)	
-	<0.028	x 10" lb/dscf x 10" lb/dscf		=				
etals emission rate		A TO TOTALSCT	Copair (Co)	-				
etais emission rate	(Askar):		pie	ot o				
			E ₄₁ =	$C_*^1 \times Q_{sto}$				
				=	< 0.000156	lb/hr	Manganese (Mn)	
=	<0.000240		Antimony (Sb)	#				
=	<0.000192		Arsenic (As)	=	0.000333		Nickel (Ni)	
5	<0.000384		Barium (Ba)	=	0.034634	lb/hr	Phosphorus (P)	
, #	<0.000009		Beryllium (Be)	=				
5	<0.000097		Cadmium (Cd)	=	< 0.001055		Selenium (Se)	
5	0.000380		Chromium (Cr)	=	<0.000097		Silver (Ag)	
#	<0.000252	lb/hr	Copper (Cu)	22	<0.000192		Thallium (TI)	
,	~0 000A07		Load (Dh)	証	0.002344	lb/hr	Zinc (Zn)	

Metals Laboratory Data Summary

Blient: Docation: H. Kramer

Chicago, IL Source: North Baghouse

Date:

9/17/2013

Run #:

Time: 08:15 - 11:32 Filter Diam

Filter Diam "A value"=

110.00 4.33

mm in.

20.62

ug/in.

ND-Value Below Minimum Detection Limit - listed by DAT as ND

J-Value below LOQ but above MDL

(Sample - Blank) less than MDL: use MDL

FH = Front half, BH = Back half

Front	Half	Metal	Calc	ulation

				***************************************	i wetai Calcul	ation					
			<u>l Value</u>		lues				Final*		
	FH Sample	FH Blank	A Value	5 % of FH	Lesser value	Greater Value	Blank Value	Blank Corrected	Blank Corrected		
	(M ₁₀)	(M _{thb})	(filter)	Sample	(M _{mb}) vs 5%	l vs ll	Used	Sample Mass	Sample Mass		
Metal	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	Sample	MDL
Antimony	1.29	7.15	20.62	0.06	0.06	20.62	7.15	-5.86	<1.25	J	1.25
Arsenic	<1.25	0.00	20.62	0.06	0.00	20.62	0.00	1.25	<1.25	ND	1.25
Barium	8.96	11.02	20.62	0.45	0.45	20.62	11.02	-2.06	<2.50	J	2.50
Beryllium	<0.06	0.00	20.62	0.00	0.00	20.62	0.00	0.06	<0.06	ND	0.06
Cadmium	< 0.63	0.00	20.62	0.03	0.00	20.62	0.00	0.63	< 0.63	ND	0.63
Chromium	7.87	5.44	20.62	0.39	0.39	20.62	5.44	2.43	2.43		0.25
Cobalt	< 0.63	1.01	20.62	0.03	0.03	20.62	1.01	-0.38	< 0.63	ND	0.63
Copper	1.41	1.55	20.62	0.07	0.07	20.62	1.55	-0.14	<0.32		0.32
Lead	25.71	21.09	20.62	1.29	1,29	20.62	20.62	5.09	5.09		1.25
Manganese	0.78	1.26	20.62	0.04	0.04	20.62	1.26	-0.48	< 0.63	J	0.63
Nickel	4.07	2.12	20.62	0.20	0.20	20.62	2.12	1.95	1.95	J	0.63
Phosphorus	179.14	171.49	20.62	8.96	8.96	20.62	20.62	158.52	158.52		2.50
Selenium	12.13	11.63	20.62	0.61	0.61	20.62	11.63	0.50	<1.25		1.25
Silver	< 0.63	0.00	20.62	0.03	0.00	20.62	0.00	0.63	< 0.63	ND	0.63
Thallium	<1.25	0.00	20.62	0.06	0.00	20.62	0.00	1.25	<1.25	ND	1.25
Zinc	12.93	5.24	20.62	0.65	0.65	20.62	5.24	7.69	7.69		0.63

^{*}Use MDL if the blank corrected value is <MDL

Back Half Metal Calculation

			I Value	# Va	lues				Final		
	BH Sample	BH Blank		5 % of BH	Lesser value	Greater Value	Blank Value	Blank Corrected	Blank Corrected		
	(M _{bh})	(M_{bhb})		Sample	(M _{bh}) vs 5%	l vs II	Used	Sample Mass	Sample Mass		
Metal	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	Sample	MDL
Antimony	2.87	17.76	1.00	0.14	0.14	1.00	1.00	1.87	1.87	J	1.25
Arsenic	<1.25	0.00	1.00	0.06	0.00	1.00	0.00	1.25	<1.25	ND	1.25
Barium	<2.50	0.00	1.00	0.13	0.00	1.00	0.00	2.50	<2.50	ND	2.50
Beryllium	0.15	0.43	1.00	0.01	0.01	1.00	0.43	-0.28	< 0.06	J	0.06
Cadmium	< 0.63	3.51	1.00	0.03	0.03	1.00	1.00	-0.37	< 0.63	ND	0.63
Chromium	2.52	0.00	1.00	0.13	0.00	1.00	0.00	2.52	2.52		0.25
Cobalt	<0.63	0.00	1.00	0.03	0.00	1.00	0.00	0.63	< 0.63	ND	0.63
Copper	3.96	5.16	1.00	0.20	0.20	1.00	1.00	2.96	2.96		0.32
Lead	<1.25	8.25	1.00	0.06	0.06	1.00	1.00	0.25	<1.25	ND	1.25
Manganese	1.40	0.00	1.00	0.07	0.00	1.00	0.00	1.40	1.40	J	0.63
Nickel	2.39	0.00	1.00	0.12	0.00	1.00	0.00	2.39	2.39	J	0.63
Phosphorus	307.63	322.35	1.00	15.38	15.38	15.38	15.38	292.25	292.25		2.50
Selenium	12.48	0.00	1.00	0.62	0.00	1.00	0.00	12.48	12.48		1.25
Silver	< 0.63	0.00	1.00	0.03	0.00	1.00	0.00	0.63	< 0.63	ND	0.63
Thallium	<1.25	0.00	1.00	0.06	0.00	1.00	0.00	1.25	<1.25	ND	1.25
Zinc	22.82	0.00	1.00	1.14	0.00	1.00	0.00	22.82	22.82		0.63
"Use MDL if the	blank corrected	l value is <mdl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<>									

Metals Laboratory Data Summary Total Front Half Plus Back Half Metal Calculation

Client:

H. Kramer Chicago, IL

Location: Source:

North Baghouse

Date:

9/17/2013

Run #:

Time:

08:15 - 11:32

ND-Value Below Minimum Detection Limit - listed by DAT as ND

J-Value below LOQ but above MDL

(Sample - Blank) less than MDL: use MDL

FH = Front half, BH = Back half

32		Final FH	Final BH BI	i Blank Total Metal			
		Blank Corrected	Blank Corrected	(M_t)			
	Metal	Sample Mass	Sample Mass	(micrograms)	MDL	Front half J or ND	Back half J or ND
-	Antimony	<1.25	1.87	<3.12	1.25	J	J
	Arsenic	<1.25	<1.25	<2.50	1.25	ND	ND
	Barlum	<2.50	<2.50	<5.00	2.50	J	ND
	Beryllium	<0.06	<0.06	<0.12	0.06	ND	J
	Cadmium	< 0.63	<0.63	<1.26	0.63	ND	ND
	Chromium	2.43	2.52	4.95	0.25		
	Cobalt	< 0.63	< 0.63	<1.26	0.63	ND	ND
	Copper	< 0.32	<2.96	<3.28	0.32		
	Lead	5.09	<1.25	<6.34	1.25		ND
	Manganese	< 0.63	1.40	<2.03	0.63	J	J
	Nickel	1.95	2.39	4.34	0.63	J	J
	Phosphorus	158.52	292.25	450.77	2.50		
	Selenium	<1.25	12.48	<13.73	1.25		
	Silver	< 0.63	< 0.63	<1.26	0.63	ND	ND
	Thallium	<1.25	<1.25	<2.50	1,25	ND	ND
	Zinc	7.69	22.82	30.51	0.63		

USEPA Method 2 Volumetric Flow Rate Sample Calculations (Circular Ducts)

Client:

H. Kramer

Location:

Chicago, IL

Source:

North Baghouse

Date:

9/17/2013

Run #:

1

Data Input

Stack area (Ae):

Carbon Dioxide (CO₂): 0.2 %
Oxygen (O₂): 20.6 %
Nitrogen (N₂): 79.2 %

Fractional Moisture Content (B_{ws})

0.0140 dimensionless

Stack Temperature (T_s):

114.0 °F

Pitot Coefficient $\{C_p\}$: Average square root of ΔP Barometric Pressure $\{P_{bar}\}$: 0.84 dimensionless 0.9416 inches H₂O 29.60 inches Hg

Barometric Pressure (P_{bar}): Static Pressure (S_t) Stack diameter:

-0.65 Inches H₂O 59.50 Inches 19.3091 ft²

Sample calculations @ standard conditions (29.92 inches Hg, 68.0 °F):

Dry molecular weight of stack gas:

$$M_d = (0.44 \times \%CO_2) + (0.32 \times \%O_2) + (0.28 \times \%N_2)$$

28.856 lb/lb-mole

Molecular weight of stack gas, wet basis:

$$M_s = (M_d \times (1 - B_{ws})) + (18 \times B_{ws})$$

28.704 lb/lb-mole

Absolute stack gas pressure:

$$P_s = P_{bar} + \left(\frac{S_t}{13.6}\right)$$

=

29.552 inches H₂O

Stack gas velocity:

$$V_s = 85.49 \times C_p \times \sqrt{\Delta P} \times \sqrt{\frac{\left(T_s + 460\right)}{\left(P_s \times M_s\right)}}$$

=

55.626 feet/second

Stack gas volumetric flow rate:

$$Q_a = A_s \times V_s \times 60$$

=

64,445 acfm

Stack gas volumetric flow rate, wet basis:

$$Q_{sw} = Q_{s} \times \left[\left(\frac{528^{\circ}R}{29.92 \text{in.Hg}} \right) \times \left(\frac{P_{s}}{T_{s} + 460} \right) \right]$$

=

58,547 scfm

$$Q_{sw} = Q_{a} \times \left[\left(\frac{528^{\circ}R}{29.92\text{in.Hg}} \right) \times \left(\frac{P_{s}}{T_{s} + 460} \right) \right] \times 60$$

=

3,512,835 scfh

Stack gas volumetric flow rate, dry basis:

$$Q_{std} = Q_{sw} \times (1 - B_{we})$$

=

57,727 dscfm

$$Q_{std} = Q_{sw} \times (1 - B_{ws}) \times 60$$

=

3,463,629 dscfh

USEPA Method 4 Moisture Determination Sample Calculations

Client:

H. Kramer

Location: Source: Chicago, IL. North Baghouse

Date:

9/17/2013

Date: Run #:

1

Data Input:

Volume metered (V_m):

100,990 ft³

Meter calibration coefficient (Y_d):

1.002 dimensionless 29.60 inches Hg

Barometric pressure (P_{bar}): Meter sample rate (ΔH):

1.09 inches H₂O

Meter inlet/outlet temperature (T_m):

73.2 °F

Volume of moisture collected (Vic):

30.0 milliliters

Stack Temperature (T_s):

114.0 °F

Static Pressure (St):

-0.7 inches H₂O

Sample calculations @ standard conditions (29.92 inches Hg, 68.0 °F):

Volume of sample, dry basis:

$$Vm_{std} = V_m \times Y_d \times \left(\frac{528.0^o R}{29.92'' Hg}\right) \times \left(\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_m + 460}\right)$$

:

99.400 dscf

Volume of water vapor in sample:

$$V_{wstd} = \frac{0.04707ft^3}{ml} \times V_{ic}$$

=

1.412 scf

Fractional moisture content of stack gas:

$$B_{ws} = \frac{V_{wstd}}{\left(V_{mstd} + V_{wstd}\right)}$$

=

0.0140 B_{wo}

Percent Moisture:

%moisture = $B_{ws} \times 100$

=

1.40 %

Fractional moisture content of stack gas at saturated conditions:

$$T_{seK} = ((T_s - 32) * 0.5556) + 273$$

=

318.6 °Kelvin

$$P_{s(mmHg)} = \left(P_{bar} + \frac{S_t}{13.6}\right) \times 25.401$$

=

751.87 mm Hg

$$B_{wos} = \frac{\sqrt{10^{\left(A\left(\frac{B}{(T_{best}, -C)}\right)}\right)}}{P}$$

wnere: A= 8.361 B=1893.5

0.0941 %

Percent moisture at saturated conditions:

$$%$$
moisture_{saturated} = $B_{wos} \times 100$

=

9.41 %

Percent moisture used for emissions calculations:

=

1.40 %

USEPA Method 29 Metals Emissions Calculation Summary

Client: Location: Source: Date:

Run ∉:

H. Kramer Chicago, It. North Baghouse 9/17/2013

larometric pressure (P _{sat}): stack pressure (P _s):		inches Hg				
	D-00 - 00 40		1		Manganese (Mn):	1.88 ug
	29.55	Inches Hg Abs.	Antimony (Sb):	<2.50 ug		
est length (0):	180.0	minutes	Arsenic (As):	<2.50 ug	Nickel (Ni):	4.370 ug
iample nozzie diameter (0,):	0.1870	inches	Barium (Ba):	<14.39 ug	Phosphorus (P):	495.002 ug
iample nozzie area (Sb):	0.000191	ft ⁵	Beryllium (Be):	<0.12 ug		
Stack temperature (T _s):	135.8	٩F	Cadmium (Cd):	<1.26 ug	Selenium (Se):	<2.50 ug
folume metered (V _{astd}):	100.595	dscf			Silver (Ag):	<1.26 ug
itack gas velocity (V _s):	56.582	ft/sec	Chromium (Cr):	<3.38 ug	Thellium (TI):	<2.50 ug
itack gas volumetric flow (Q _{scr}):	3,392.104	dscfh	Cobalt (Co):	<1.26 ug	Zinc (Zn):	24.780 ug
ractional Moisture content (B _{vs}):	0.0143	%	Copper (Cu):	5.45 ug		
			Lead (Pb):	<2.50 ug		

Sample calculations @ standard conditions (29.92 Inches Hg, 68.0 °F).

-	
Parcent	lankinotia:

$$\%Isokinetic = \frac{0.0945 \times V_{mold} \times \left(T_s + 460\right)}{P_s \times V_s \times \theta \times A_n \times \left(1 - B_{wo}\right)}$$

100.14 % isokinetic

Motals concentration (mg/dscm):

$$C_{s} = \frac{M_{t}}{\left[\left(\frac{V_{midd}}{35.31dscf/dscm}\right)\right]}$$

			=	0.00066	mg/dscm manganese (Mn)
322	<0.00088	mg/dscm Antimony (Sb)			_ , ,
=	<0.00088	mg/dscm Arsenic (As)	==	0.00153	mg/dscm Nickel (Ni)
==	< 0.00505	mg/dscm Barium (Ba)	==	0.17024	mg/dscm Phosphorus (P)
27	< 0.00004	mg/dscm Beryllium (Be)	=		
· #	< 0.00044	mg/dscm Cadmium (Cd)	=	<0.00088	mg/dscm Selenium (Se)
=	<0.00119	mg/dscm Chromium (Cr)	=	< 0.00044	mg/dscm Silver (Ag)
E	0.00191	mg/dscm Copper (Cu)	=	88000.0>	mg/dscm Thallium (TI)
			=	0.00870	mg/dscm Zinc (Zn)
=	<0.00088	mg/dscm Lead (Pb)	***		- , ,
=	< 0.00044	mg/dscm Cobalt (Co)	=		

Motels concentration (x10-8 lb/dscf):

$$C_{k}^{1} = \frac{\left(2.205 \times 10^{-9} \text{lb} \times M_{t}\right)}{V_{\text{model}}}$$

			=	0.041 x 10" lb/dscf Manganese (Mn
=	< 0.055	x 10" Ib/dscf Antimony (Sb)	=	,
=	< 0.055	x 10" lb/dscf Arsenic (As)	=	0.096 x 10" lb/dscf Nickel (Ni)
=	< 0.315	x 10" (b/dscf Barium (Ba)	=	10.631 x 10" lb/dscf Phosphorus (P)
=	< 0.003	x 10" lb/dscf Beryllium (Be)	te:	(.,
=	<0.028	x 10" lb/dscf Cadmium (Cd)	825	<0.055 x 10" lb/dscf Selenium (Se)
=	< 0.074	x 10" lb/dscf Chromium (Cr)	200	<0.028 x 10" lb/dscf Silver (Ag)
#	0.119	x 10" lb/dscf Copper (Cu)	=	<0.055 x 10" lb/dscf Thallium (Ti)
			=	0.543 x 10 bldscf Zinc (Zn)
=	< 0.055	x 10" (b/dscf Lead (Pb)	=	
E25	< 0.028	x 10" lb/dscf Cobalt (Co)	E	

Motels emission rate (lb/hr):

		L ₂₆ - O	6 × CZ 65d		
			=	0.000140	lb/hr Manganese (Mn)
=	<0.000186	ib/hr Antimony (Sb)	×		, ,
=	< 0.000186	Ib/hr Arsenic (As)	=	0.000325	lb/hr Nickel (Ni)
22	<0.001070	lb/hr Barium (Ba)	222	0.036062	lb/hr Phosphorus (P)
22	<0.000009	lb/hr Beryllium (Be)	=		()
E	<0.000094	lb/hr Cadmium (Cd)	=	<0.000186	lb/hr Selenium (Se)
=	< 0.000251	fb/hr Chromium (Cr)	=	< 0.000094	lb/hr Silver (Ag)
#	0.000405	lb/hr Copper (Cu)	=	< 0.000186	lb/hr Thallium (TI)
		** * *	=	0.001842	lb/hr Zinc (Zn)
` =	<0.000186	(b/hr Lead (Pb)			
-	-0 000004	thefine Controls (Cons			

Metals Laboratory Data Summary

ARI

Client: Location: H. Kramer Chicago, IL

North Baghouse

Source: Date:

9/17/2013

Run #:

Time:

2 12:35 - 15:43 ND-Value Below Minimum Detection Limit - listed by DAT as ND

J-Value below LOQ but above MDL

(Sample - Blank) less than MDL: use MDL

FH = Front half, BH = Back half

Front Half Metal Calculation

	FH Sample (M _{fb})	FH Blank (M _{mb})	<u>I Value</u> <u>A</u> Value (4 inch fitter)	<u>∥ Va</u> 5 % of FH Sample	lues Lesser value (M _{ftb}) vs 5%	Greater Value	Blank Value Used	Blank Corrected Sample Mass	Final* Blank Corrected Sample Mass		
Metal	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	Sample	MDL
Antimony	2.02	7.15	20.62	0.10	0.10	20,62	7.15	-5.13	<1.25	J	1,25
Arsenic	<1.25	0.00	20.62	0.06	0.00	20.62	0.00	1.25	<1.25	ND	1.25
Barium	6.60	11.02	20.62	0.33	0.33	20.62	11.02	-4.42	<2.50	J	2.50
Beryllium	< 0.06	0.00	20.62	0.00	0.00	20.62	0.00	0.06	< 0.06	ND	0.06
Cadmium	< 0.63	0.00	20.62	0.03	0.00	20.62	0.00	0.63	<0.63	ND	0.63
Chromium	5.05	5.44	20.62	0.25	0.25	20.62	5.44	-0.39	<0.25		0.25
Cobalt	< 0.63	1.01	20.62	0.03	0.03	20.62	1.01	-0.38	< 0.63	ND	0.63
Copper	3.59	1.55	20.62	0.18	0.18	20.62	1.55	2.04	2.04		0.32
Lead	20.56	21.09	20.62	1.03	1.03	20.62	20.62	-0.06	<1.25		1.25
Manganese	2.26	1.26	20.62	0.11	0.11	20.62	1.26	1.00	1.00	J	0.63
Nickel	4.46	2.12	20.62	0.22	0.22	20.62	2.12	2.34	<2.34		0.63
Phosphorus	206.46	171.49	20.62	10.32	10.32	20.62	20.62	185.84	185.84		2.50
Selenium	6.36	11.63	20.62	0.32	0.32	20.62	11.63	-5.27	<1,25		1.25
Silver	< 0.63	0.00	20.62	0.03	0.00	20.62	0.00	0.63	< 0.63	ND	0.63
Thallium	<1.25	0.00	20.62	0.06	0.00	20.62	0.00	1.25	<1.25	ND	1.25
Zinc	19.88	5.24	20.62	0.99	0.99	20.62	5.24	14.64	14.64		0.63

^{*}Use MDL if the blank corrected value is <MDL

Back Half Metal Calculation

			l Value	II Va	lues				Final*		
	BH Sample	BH Blank		5 % of BH	Lesser value	Greater Value	Blank Value	Blank Corrected	Blank Corrected		
	(M _{bh})	(M _{bhb})		Sample	(M _{bh}) vs 5%	l vs II	Used	Sample Mass	Sample Mass		
Metal	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	Sample	MDL
Antimony	<1.25	17.76	1.00	0.06	0.06	1.00	1.00	0.25	<1.25	ND	1.25
Arsenic	<1.25	0.00	1.00	0.06	0.00	1.00	0.00	1.25	<1.25	ND	1.25
Barium	11.89	0.00	1.00	0.59	0.00	1.00	0.00	11.89	11.89		2.50
Beryllium	< 0.10	0.43	1.00	0.01	0.01	1.00	0.43	-0.33	< 0.06	J	0.06
Cadmium	0.92	3.51	1.00	0.05	0.05	1.00	1.00	-0.08	< 0.63	J	0.63
Chromium	3.13	0.00	1.00	0.16	0.00	1.00	0.00	3.13	3.13		0.25
Cobalt	< 0.63	0.00	1.00	0.03	0.00	1.00	0.00	0.63	<0.63	ND	0.63
Соррег	4.41	5.16	1.00	0.22	0.22	1.00	1.00	3.41	3.41		0.32
Lead	<1.25	8.25	1.00	0.06	0.06	1.00	1.00	0.25	<1.25	ND	1.25
Manganese	88.0	0.00	1.00	0.04	0.00	1.00	0.00	0.88	88.0	J	0.63
Nickel	2.03	0.00	1.00	0.10	0.00	1.00	0.00	2.03	2.03	J	0.63
Phosphorus	314.91	322.35	1.00	15.75	15.75	15,75	15.75	299.16	299.16		2.50
Selenium	<1.25	0.00	1.00	0.06	0.00	1.00	0.00	1.25	<1.25	ND	1.25
Silver	< 0.63	0.00	1.00	0.03	0.00	1.00	0.00	0.63	< 0.63	ND	0.63
Thallium	<1.25	0.00	1.00	<0.06	0.00	1.00	0.00	1.25	<1.25	ND	1.25
JZinc .	10.14	0.00	1.00	0.51	0.00	1.00	0.00	10.14	10.14		0.63
N∭Jse MDL if the	blank corrected	i value is <mdi< th=""><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></mdi<>	-								

Metals Laboratory Data Summary Total Front Half Plus Back Half Metal Calculation

Client:
Cocation:
Cource:

H. Kramer Chicago, IL North Baghouse

Date: Run #:

9/17/2013 2

Time 12:35 - 15:43

ND-Value Below Minimum Detection Limit - listed by DAT as ND

J-Value below LOQ but above MDL

(Sample - Blank) less than MDL: use MDL

FH = Front half, BH = Back half

Metal	Final FH Blank Corrected Sample Mass	Final BH Blank Corrected Sample Mass	BH Blank	Total Metal (M _t) (micrograms)	MDL	Front half J or ND	Back half J or ND
Antimony	<1.25	<1.25		<2.50	1.25	J	ND
Arsenic	<1.25	<1.25		<2.50	1.25	ND	ND
Barium	<2.50	11.89		<14.39	2.58	J	0.00
Beryllium	<0.06	< 0.06		<0.12	0.06	ND	J
Cadmium	< 0.63	< 0.63		<1.26	0.63	ND	J
Chromium	<0.25	3.13		<3.38	0.25		
Cobalt	< 0.63	< 0.63		<1.26	0.63	ND	ND
Copper	2.04	3.41		5.45	0.32		
Lead	<1.25	<1.25		<2.50	1.25		ND
Manganes	a 1.00	0.88		1.88	0.63	j	J
Nickel	2.34	2.03		4.37	0.63		J
Phosphoru	s 185.84	299.16		485.00	2.50		
Selenium	<1.25	<1.25		<2.50	1.25		ND
Silver	< 0.63	<0.63		<1.26	0.63	ND	ND
Thallium	<1.25	<1.25		<2.50	1.25	ND	ND
Zinc	14.64	10.14		24.78	0.63		

USEPA Method 2 Volumetric Flow Rate Sample Calculations (Circular Ducts)

Client:

H. Kramer

Location:

Chicago, IL North Baghouse

Source: Date:

9/17/2013

Run #:

2

Data Input

Carbon Dioxide (CO₂):

0.3 %

Oxygen (O₂):

20.6 %

Nitrogen (N₂):

79.1 %

Fractional Moisture Content (B_{ws})

0.0143 dimensionless

Stack Temperature (T_s):

135.8 **°**F

Pitot Coefficient (C_p):
Average square root of ΔP

0.84 dimensionless 0.9400 inches H₂O

Barometric Pressure (P_{bar}):

29.60 inches Hg

Static Pressure (St)

-0.65 inches H₂O

Stack diameter: Stack area (A_i): 59.50 inches 19.3091 ft²

Sample calculations @ standard conditions (29.92 inches Hg, 68.0 °F):

Dry molecular weight of stack gas:

$$M_d = (0.44 \times \%CO_2) + (0.32 \times \%O_2) + (0.28 \times \%N_2)$$

28.872 lb/lb-mole

Molecular weight of stack gas, wet basis:

$$M_s = (M_d \times (1 - B_{ws})) + (18 \times B_{ws})$$

28,717 lb/lb-mole

Absolute stack gas pressure:

$$P_s = P_{bar} + \left(\frac{S_1}{13.6}\right)$$

==

29.552 inches H₂O

Stack gas velocity:

$$V_s = 85.49 \times C_p \times \sqrt{\Delta P} \times \sqrt{\frac{(T_s + 460)}{(P_s \times M_s)}}$$

=

56.562 feet/second

Stack gas volumetric flow rate:

$$Q_s = A_s \times V_s \times 60$$

=

65,529 acfm

Stack gas volumetric flow rate, wet basis:

$$Q_{sw} = Q_a \times \left[\left(\frac{528^{\circ}R}{29.92\text{in.Hg}} \right) \times \left(\frac{P_s}{T_s + 460} \right) \right]$$

==

57,355 scfm

$$Q_{_{\text{DW}}} = Q_{_{\text{B}}} \times \left[\left(\frac{528^{\circ}R}{29.92\text{in.Hg}} \right) \times \left(\frac{P_{_{\text{B}}}}{T_{_{\text{S}}} + 460} \right) \right] \times 60$$

=

3,441,308 scfh

Stack gas volumetric flow rate, dry basis:

$$Q_{std} = Q_{sw} \times (1 - B_{ws})$$

=

56,535 dscfm

$$Q_{std} = Q_{sw} \times (1 - B_{we}) \times 60$$

=

3,392,104 dscfh

USEPA Method 4 Moisture Determination Sample Calculations

Client:

Location:

H. Kramer Chicago, IL

Source:

North Baghouse

Date:

9/17/2013

Run #:

2

Data Input:

Volume metered (V_m):

Meter calibration coefficient (Y_d):

Barometric pressure (Pbar):

Meter sample rate (ΔH):

Meter inlet/outlet temperature (T_m) :

Volume of moisture collected (V_{IG}):

Stack Temperature (T_s):

Static Pressure (St):

103.290 ft³

1.002 dimensionless

29.60 inches Ha

1.12 inches H₂O

78.9 °F

31.0 milliliters

135.8 °F

-0.7 inches H₂O

Sample calculations @ standard conditions (29.92 inches Hg, 68.0 °F):

Volume of sample, dry basis:

$$Vm_{sid} = V_m \times Y_d \times \left(\frac{528.0^{\circ} R}{29.92^{\circ} Hg}\right) \times \left(\frac{P_{ber} + \frac{\Delta H}{13.6}}{T_m + 460}\right)$$

=

100.595 dscf

Volume of water vapor in sample:

$$V_{wstd} = \frac{0.04707 ft^3}{m!} \times V_{io}$$

=

1.459 scf

Fractional moisture content of stack gas:

$$B_{ws} = \frac{V_{wstd}}{(V_{mstd} + V_{wstd})}$$

=

0.0143 Bwn

Percent Moisture:

%moisture = $B_{ws} \times 100$

==

1.43 %

Fractional moisture content of stack gas at saturated conditions:

$$T_{s(^{9}K)} = ((T_{s} - 32) * 0.5556) + 273$$

=

330.7 °Kelvin

$$P_{s(mmHg)} = \left(P_{bar} + \frac{S_1}{13.6}\right) \times 25.401$$

=

751.87 mm Hg

$$B_{wos} = \frac{\sqrt{\left(10^{\left(A\left(\frac{B}{\left(T_{vos},C\right)}\right)\right)}\right)}}{P}$$

where: A= 8.361 B±1893.5

=

0.1717 %

Percent moisture at saturated conditions:

$$%$$
moisture_{seturated} = $B_{wcs} \times 100$

=

17.17 %

Percent moisture used for emissions calculations:

=

1.43 %

USEPA Method 29 Metals Emissions Calculation Summary

Ç	ii	er	ıŧ	:	
L	O	.,	e i	c	n

Chicago, IL North Baghouse 9/16/2013

Source: Date: Run #

Test Data Input		Metals Laborator	y Analysis Weights	(Mt)	
Barometric pressure (Ptx.):	29.45 Inches Hg			Manganese (Mn):	<2.16 us
Stack pressure (P _b):	29.41 Inches Hg Ab	. Antimony (Sb):	<7.88 ug		
Test length (0):	180.0 minutes	Arsenic (As):	<2.50 ug	Nickel (Ni):	4.90 ug
Sample nozzle diameter (D,):	0.1870 inches	Barium (Ba):	<5.00 ug	Phosphorus (P):	432.64 ug
Sample nozzle area (Sb):	0.000191 ft ³	Beryllium (Be):	<0.12 ug		
Stack temperature (T _*):	133.7 °F	Cadmium (Cd):	<1.28 ug	Selenium (Se):	<12.24 89
Volume metered (V _{mate}):	103.733 decf			Silver (Ag):	<1.38 ug
Stack gas velocity (V,):	57.825 ft/sec	Chromium (Cr):	5.62 ug	Thallium (Ti):	<2.50 ug
Stack gas volumetric flow (Q _{ste}):	3,455,392 dscfh	Cobalt (Co):	<1.26 ug	Zinc (Zn):	24.54 ug
Fractional Moisture content (8, s):	0.0166 %	Copper (Cu):	<3.98 ug		
		Lead (Pb):	8.45 ug		
Sample calculations @ standard	conditions (29.92 inches h	g, 68.0°F):		COLUMN TO THE PARTY OF THE PART	

$$\% l sokinetic = \frac{0.0945 \times V_{motol} \times (T_s + 460)}{P_s \times V_s \times \theta \times A_\alpha \times (1 - B_{wo})}$$

101.37 % isokinetic

Matais concentration (mg/dscm):

C -	Μ,
G	Vmdc)]
	35.31dscf / dscm

			==	<0.00074	mg/dscm Manganese (Mn)
=	<0.00268	mg/dscm Antimony (Sb)			
==	< 0.00085	mg/dscm Arsenic (As)	=	0.00167	mg/dscm Nickel (Ni)
=	< 0.00170	mg/dscm Barium (Ba)	==	0.14727	mg/dscm Phosphorus (P)
*	< 0.00004	mg/dscm Beryllium (Be)			- , , ,
53	< 0.00043	mg/dscm Cadmium (Cd)	=	< 0.00417	mg/dscm Selenium (Se)
=	0.00191	mg/dscm Chromium (Cr)	22	< 0.00047	mg/dscm Silver (Ag)
=	< 0.00135	mg/dscm Copper (Cu)	=	<0.00085	mg/dscm Thallium (TI)
			=	0.00835	mg/dscm Zinc (Zn)
=	0.00288	mg/dscm Lead (Pb)			- ,
#	< 0.00043	mg/dscm Cobalt (Co)			

Metals concentration (x10 9 lb/dscf);

$$C_{s}^{1} = \frac{\left(\frac{2.205 \times 10^{-9} \text{lb}}{\mu \text{g}} \times \text{M}_{t}\right)}{V_{\text{med}}}$$

				~0.040	X 10 IDIUSU	- wanganese (wn)
=	< 0.168	x 10" ib/dscf Antimony (Sb)				,
=	< 0.053	x 10 lb/dscf Arsenic (As)	=		x 10" lb/dsci	
=	< 0.106	x 10° lb/dscf Barium (Ba)	E	9.197	x 10" lb/dsc!	Phosphorus (P)
=	< 0.003	x 10" lb/dscf Beryllium (Be)				
==	<0.027	x 10" lb/decf Cadmium (Cd)	=	< 0.260	x 10" lb/dsci	Selenium (Se)
=	0.119	x 10" lb/dscf Chromlum (Cr)	#	< 0.029	x 10" lb/dscf	Silver (Ag)
Ħ	< 0.085	x 10" lb/dscf Copper (Cu)	=	< 0.053	x 10" lb/dscf	Thallium (Ti)
		,	=	0.522	x 10" lb/dscf	Zinc (Zn)
æ	0.180	x 10" lb/dscf Lead (Pb)				. ,
=	< 0.027	x 10" lb/dscf Cobalt (Co)				

Metals emission rate (lb/hr):

		-m 0	e v and		
			=	< 0.000159	lb/hr Manganese (Mn)
=	< 0.000579	lb/hr Antimony (Sb)			. ,
=	< 0.000184	Ib/hr Arsenic (As)	==	0.000360	lb/hr Nickel (Ni)
=	< 0.000367	lb/hr Barium (Ba)	=	0.031778	lb/hr Phosphorus (P)
=	<0.000009	lb/hr Beryllium (Be)			
=	<0.000093	lb/hr Cadmium (Cd)	=	< 0.000899	lb/hr Selenium (Se)
=	0.000413	lb/hr Chromium (Cr)	**	< 0.000101	lb/hr Silver (Ag)
=	<0.000292	lb/hr Copper (Cu)	=	<0.000184	lb/hr Thallium (TI)
			=	0.001802	lb/hr Zinc (Zn)
=	0.000621	lb/hr Lead (Pb)			, ,
×	<0.000093	lb/hr Cobalt (Co)			

Metals Laboratory Data Summary

Client: H. Kramer

ுocation: Chicago, IL Bource: North Baghouse

Date: 9/18/2013

Run #: 3

Time 07:40 - 10:48

ND-Value Below Minimum Detection Limit - listed by DAT as ND

J-Value below LOQ but above MDL

(Sample - Blank) less than MDL: use MDL

FH = Front half, BH = Back half

Front Half Metal Calculation

			<u>l Value</u>	<u>II V</u> a	lues				Final*		
	FH Sample	FH Blank	A Value	5 % of FH	Lesser value	Greater Value	Blank Value	Blank Corrected	Blank Corrected		
	(M _{th})	(M _{fhb})	(4 inch filter)	Sample	(M _{thb}) vs 5%	i vs II	Used	Sample Mass	Sample Mass		
Metal	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	Sample	MDL
Antimony	1.41	7.15	17.59	0.07	0.07	17.59	7.15	-5.74	<1.25	J	1.25
Arsenic	<1.25	0.00	17.59	0.06	0.00	17.59	0.00	1.25	<1.25	ND	1.25
Barium	8.22	11.02	17.59	0.41	0.41	17.59	11.02	-2.80	<2.50	j	2.50
Beryllium	<0.06	0.00	17.59	0.00	0.00	17.59	0.00	0.06	< 0.06	ND	0.06
Cadmium	< 0.63	0.00	17.59	0.03	0.00	17.59	0.00	0.63	< 0.63	ND	0.63
Chromium	6.57	5.44	17.59	0.33	0.33	17.59	5.44	1.13	1.13		0.25
Cobalt	< 0.63	1.01	17.59	0.03	0.03	17.59	1.01	-0.38	< 0.63	ND	0.63
Copper	1.18	1.55	17.59	0.06	0.06	17.59	1.55	-0.37	<0.32		0.32
Lead	23.35	21.09	17.59	1.17	1.17	17.59	17.59	5.76	5.76		1.25
Manganese	< 0.63	1.26	17.59	0.03	0.03	17.59	1.26	-0.63	<0.63	ND	0.63
Nickel	4.92	2.12	17.59	0.25	0.25	17.59	2.12	2.80	2.80		0.63
Phosphorus	145.94	171.49	17.59	7.30	7.30	17.59	17.59	128,35	128.35		2.50
Selenium	12.48	11.63	17.59	0.62	0.62	17.59	11.63	0.85	<1.25		1.25
Silver	0.75	0.00	17.59	0.04	0.00	17.59	0.00	0.75	0.75	J	0.63
Thallium	<1.25	0.00	17.59	0.06	0.00	17.59	0.00	1.25	<1.25	ND	1.25
Zinc	17.24	5.24	17.59	0.86	0.86	17.59	5.24	12.00	12.00		0.63
*Use MDL if the	blank corrected	l value is <mdi< th=""><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></mdi<>	_								

Back Half Metal Calculation

			<u>l Value</u>	Management of the Control of the Con	lues				Final*		
	BH Sample	BH Blank		5 % of BH	Lesser value	Greater Value	Blank Value	Blank Corrected	Blank Corrected		
	(M_{bh})	(M_{bhb})		Sample	(M _{bh}) vs 5%	l vs II	Used	Sample Mass	Sample Mass		
Metal	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	(micrograms)	Sample	MDL
Antimony	7.63	17.76	1.00	0.38	0.38	1.00	1.00	6.63	6.63		1.25
Arsenic	<1.25	0.00	1.00	0.05	0.00	1.00	0.00	1.25	<1.25	ND	1.25
Barium	<2.50	0.00	1.00	0.13	0.00	1.00	0.00	2.50	<2.50	ND	2.50
Beryllium	<0.06	0.43	1.00	0.00	0.00	1.00	0.43	-0.37	< 0.06	ND	0.06
Cadmium	1,23	3.51	1.00	0.06	0.06	1.00	1.00	0.23	< 0.63	J	0.63
Chromium	4.49	0.00	1.00	0.22	0.00	1.00	0.00	4.49	4.49		0.25
Cobalt	< 0.63	0.00	1.00	0.03	0.00	1.00	0.00	0.63	< 0.63	ND	0.63
Copper	4.66	5.16	1.00	0.23	0.23	1.00	1.00	3.66	3.66		0.32
Lead	3.69	8.25	1.00	0.18	0.18	1.00	1.00	2.69	2.69	J	1.25
Manganese	1.53	0.00	1.00	80.0	0.00	1.00	0.00	1.53	1.53	J	0.63
Nickel	2.10	0.00	1.00	0.11	0.00	1.00	0.00	2.10	2.10	j	0.63
Phosphorus	320.31	322.35	1.00	16.02	16.02	16.02	16.02	304.29	304.29		2.50
Selenium	10.99	0.00	1.00	0.55	0.00	1.00	0.00	10.99	10.99		1.25
Silver	< 0.63	0.00	1.00	0.03	0.00	1.00	0.00	0.63	<0.63	ND	0.63
Thallium	<1.25	0.00	1.00	0.06	0.00	1.00	0.00	1.25	<1.25	ND	1.25
Zinc	12.54	0.00	1.00	0.63	0.00	1.00	0.00	12.54	12.54		0.63
*Use MDL if th	he blank corrected	d value is <mdl< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></mdl<>									

Metals Laboratory Data Summary Total Front Half Plus Back Half Metal Calculation

Client: Location: H. Kramer Chicago, IL

Source:

North Baghouse 9/18/2013

Date:

3

Run #: Time

07:40 - 10:48

ND-Value Below Minimum Detection Limit - listed by DAT as ND

J-Value below LOQ but above MDL

(Sample - Blank) less than MDL: use MDL

FH = Front half, BH = Back half

	Final FH Blank Corrected	Final BH Blank Corrected	BH Blank	Total Metal (M _t)			
Metal	Sample Mass	Sample Mass		(micrograms)	MDL	Front half J or ND	Back half J or ND
Antimony	<1.25	6.63		<7.88	1.25	J	
Arsenic	<1.25	<1.25		<2.50	1.25	ND	ND
Barium	<2.50	<2.50		<5.00	2.50	j	ND
Beryllium	< 0.06	<0.06		<0.12	0.06	NO	ND
Cadmium	< 0.63	< 0.63		<1.26	0.63	ND	J
Chromium	1.13	4,49		5.62	0.25		
Cobalt	< 0.63	< 0.63		<1.26	0.63	ND	ND
Copper	< 0.32	3.66		<3.98	0.32		
Lead	5.76	2.69		8.45	1.25		J
Manganese	< 0.63	1.53		<2.16	0.63	ND	J
Nickel	2.80	2.10		4.90	0.63		J
Phosphorus	128.35	304.29		432.64	2.50		
Selenium	<1.25	10.99		<12.24	1.25		
Silver	0.75	< 0.63		<1.38	0.63	J	ND
Thallium	<1.25	<1.25		<2.50	1.25	ND	ND
Zinc	12.00	12.54		24.54	0.63		

USEPA Method 2 Volumetric Flow Rate Sample Calculations (Circular Ducts)

Client:

H. Kramer

Location: Source:

Chicago, IL North Baghouse

Date:

9/18/2013

Run #:

Data Input

Carbon Dloxide (CO2):

Oxygen (O2):

Nitrogen (N2):

Fractional Moisture Content (B_{ws})

Stack Temperature (T_s):

Pitot Coefficient (Cp): Average square root of AP

Barometric Pressure (Pbar): Static Pressure (St)

Stack diameter: Stack area (A.):

0.4 %

20.4 % 79.2 %

0.0166 dimensionless

133.7 °F

0.84 dimensionless 0.9601 Inches H₂O

29.45 Inches Hg

-0.55 inches H_zO 59.50 Inches

19.3091 ft²

Sample calculations @ standard conditions (29.92 inches Hg, 68.0 °F):

Dry molecular weight of stack gas:

$$M_d = (0.44 \times \%CO_2) + (0.32 \times \%O_2) + (0.28 \times \%N_2)$$

28.880 lb/lb-mole

Molecular weight of stack gas, wet basis:

$$\boldsymbol{M_s} = \left(\boldsymbol{M_d} \times \left(1 - \boldsymbol{B_{ws}}\right)\right) + \left(18 \times \boldsymbol{B_{ws}}\right)$$

28.699 lb/lb-mole

Absolute stack gas pressure:

$$P_s = P_{bar} + \left(\frac{S_t}{13.6}\right)$$

29.410 inches H₂O

Stack gas velocity:

$$V_{s} = 85.49 \times C_{p} \times \sqrt{\Delta P} \times \sqrt{\frac{\left(T_{s} + 460\right)}{\left(P_{s} \times M_{s}\right)}}$$

57.825 feet/second

Stack gas volumetric flow rate:

$$Q_n = A_s \times V_s \times 60$$

66,993 acfm

Stack gas volumetric flow rate, wet basis:

$$Q_{sw} = Q_a \times \left[\left(\frac{528^{\circ}R}{29.92\text{in.Hg}} \right) \times \left(\frac{P_s}{T_s + 460} \right) \right]$$

=

58,562 scfm

$$Q_{sw} = Q_a \times \left[\left(\frac{528^{\circ}R}{29.92\text{in.Hg}} \right) \times \left(\frac{P_s}{T_s + 460} \right) \right] \times 60$$

3,513,719 scfh

Stack gas volumetric flow rate, dry basis:

$$Q_{std} = Q_{sw} \times (1 - B_{ws})$$

57,590 dscfm

$$Q_{add} = Q_{aw} \times (1 - B_{we}) \times 60$$

3,455,392 dscfh

USEPA Method 4 Moisture Determination Sample Calculations

Client:

H. Kramer

Location:

Chicago, IL.

Source:

North Baghouse

Date:

9/18/2013

Run #:

3

Data Input:

Volume metered (V_m):

105,835 ft³

Meter calibration coefficient (Y_d):

1.002 dimensionless

Barometric pressure (Pbar):

29.45 inches Hg 1.16 inches H₂O

Meter sample rate (ΔH):

72.8 °F

Meter inlet/outlet temperature (T_m): Volume of moisture collected (V_{ic}):

37.2 milliliters

Volume of moisture collected (V_{tc})

37.2 mi

Stack Temperature (T_s):

133.7 °F

Static Pressure (St):

-0.6 inches H₂O

Sample calculations @ standard conditions (29.92 inches Hg, 68.0 °F):

Volume of sample, dry basis:

$$Vm_{std} = V_m \times Y_d \times \left(\frac{528.0^{\circ} R}{29.92'' Hg}\right) \times \left(\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_m + 460}\right)$$

103.733 dscf

Volume of water vapor in sample:

$$V_{watd} = \frac{0.04707ft^3}{ml} \times V_{tc}$$

=

1.751 scf

Fractional moisture content of stack gas:

$$B_{ws} = \frac{V_{wstd}}{(V_{mstd} + V_{wstd})}$$

2

0.0166 B_{wo}

Percent Moisture:

=

1.66 %

Fractional moisture content of stack gas at saturated conditions:

$$T_{s(^{\circ}K)} = ((T_s - 32) * 0.5556) + 273$$

=

329.5 °Kelvin

$$P_{s(mmHg)} = \left(P_{bar} + \frac{S_t}{13.6}\right) \times 25.401$$

=

748.06 mm Hg

$$B_{was} = \frac{\sqrt{\left(10^{\left(A\left(\frac{B}{(T_{a_{N_i}}, c_i})}\right)\right)}}{P}$$

4= 8.361 3=1893.6

=

0.1631 %

Percent moisture at saturated conditions:

$$%$$
moisture_{saturated} = $B_{wos} \times 100$

=

16.31 %

Percent moisture used for emissions calculations:

=

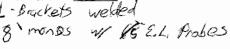
1.66 %

TRAVERSE POINT LOCATIONS FOR CIRCULAR AND RECTANGULAR STACKS AND DUCTS

Facility_	H. Kigo	3			
	Location No.	A Be	6600 P		
	Far Wall to		J. M. J. Santa		
Outside o	of Port (Distance	ce C)	61.75		in.
Inside of	Near Wall to		•		
Outside o	of Port (Distan	ce D)	2,25		in
Stack ID	(Distance C- I	Distance D)	59,5	0	in.
Port Dist	ance Downstre	eam From D	Disturbance (B)	<u> </u>	in.
Port Dist	ance Upstrear	n From Dist	turbance (A)/	02	in.
			From Disturban		
			rom Disturbance		(≥0.5)
Number	of Ports Used		Traverse Poir	its / Port	2
1	2	3	4	5	6
Port	Fractional	Stack	Product of	Port	Traverse Poi
Traverse	% of	I.D.	Columns 2	Depth	Location Fro
Point	Stack I.D.		and 3		Outside of Po
Number	(frac. %)	(inches)	(inches)	(inches)	(Sum of 4 and
710.1100					inches)
1	0.021	595	1.)5	225	inches)
	0021	595	1.25	225	inches) 4.50
1	0.021	59.5	1.25 3.99 702	225	inches) 4.50 62.4
1 2	0021	595	7.25 3.99 702 10.53	225	inches) 4.50 6.2.4 49.63
1 2 3	0.021	595	7.25 3.99 702 10.53 14.88	225	inches) 4.50 6.24 49.63 13.03
1 2 3 4	0021 0067 0.118 0177 0.150	595	7.25 3.99 702 1053 1438 21.18	225	inches) 4.50 6.24 49.63 17.13
1 2 3 4 5	0.021 0.067 0.118 0.177 0.250 0.356	59.5	125 3.99 702 1053 1438 21,18 3831	225	inches) 4.50 6.24 49.62 13.03 17.13 23.41
1 2 3 4 5	0.021 0.067 0.118 0.177 0.356 0.356	59.5	125 3.99 702 1053 14.88 21.18 3831	225	inches) 4.5 0 6 2 4 4.6 3 17.13 23 4 40 5 6 41.8 8
1 2 3 4 5 6	0.021 0.067 0.118 0.177 0.356 0.356 0.44 0.750	59.5	125 3.99 702 1053 14.88 21.18 3831 44.63 48.97	225	inches) 4.5 0 6 2.4 4.6 3 17.13 23 4 40.5 6 46.8 8
1 2 3 4 5 6 7 8	0021 0067 0,118 0177 0,50 0356 0644 0,750 0833	59.5	125 3.99 702 1053 14.88 21.18 3831 44.63 48.97	225	inches) 4.50 6.24 49.63 17.13 23.4 40.56 46.86 5123
1 2 3 4 5 6 7 8 9	0021 0067 0,118 0177 0,356 0,644 0,350 0833 0,862	59.5	1.25 3.99 702 1053 1488 21,18 3831 44,63 48,97 52,48	225	inches) 4.50 6.24 49.63 17.13 23.4 40.56 46.86 51.23

For Stacks / Ducts > 24 inches ID - No traverse point shall be located less than 1.0 inches from stack wall

QA/QC Check: Completeness	Legibility	Accuracy	Specific	ations
Method 1 Calculator	Signature/Date	L BE		9-16-13
Field Supervisor Sig	nature/Date			


Note: Sketch Stack/Ports/Control Device on Back of Form

Equivalent Diameters Downstream From Disturbance (B) = [Distance B / Stack ID]

Equivalent Diameters Upstream From Disturbance (A) = [Distance A / Stack ID]

Equivalent Diameter For a Square or Rectangular Stack = [(2xLxW)/(L+W)]

_ in. (for monorail bracket specs.) Port Length Outside of Stack 2 in. (for monorall bracket specs.) L-Brickets welded

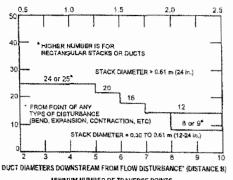
LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS

Pts	4	δ	8	10	12
1	6.7	4.4	3.2	2,6	2.1
2	25.0	14.6	10.5	8.2	6.7
3	75.0	29.6	19,4	14.6	11.8
4	93.3	70,4	32.3	22,6	57.7
5		85.4	57.7	34.2	25,0
6		95.6	80.6	65.8	35,6
7			89.5	77,A	64,4
8			96.8	85.4	75,0
9		*****		91,8	82.3
10				97.4	88.2
11					93.3
12			***************************************		97.9

LOCATION OF TRAVERSE POINTS IN RECTANGULAR STACKS

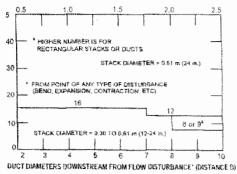
В

Disturbance


Disturbance

Sampling **Ports**

		CEMS*						
Pts	2	3	4	5	6	7	8	9
1	25.D	16.7	12.5	10.0	8.3	7.1	6.3	5,6
2	75.0	50.0	37.5	30.0	25.0	21.4	18,8	18.7
3		83.3	52.5	50.0	41.7	35.7	31.3	27.8
4			87.5	70.0	58,3	50.0	43,8	38.5
5				0.08	75.0	64.3	56.3	50.
6					91.7	78.6	58.8	61.
7		****				92.9	81.3	72.
8							93,8	83.
3								94.


3 point CEMS RATA traverse point locations (valid for rectangular and round stacks)

DUCT DIAMETERS UPSTREAM FROM FLOW DISTURBANCE' (DISTANCE A)

MINIMUM NUMBER OF TRAVERSE POINTS ISOKINETIC TESTING

DUCT DIAMETERS UPSTREAM FROM FLOW DISTURBANCE* (BISTANCE A)

MINIMUM NUMBER OF TRAVERSE POINTS

FOR VELOCITY (NON-ISOKINETIC) TRAVERSES

ARI

TOTAL LIQUID COLLECTED (specify mi or g)

FIELD DATA

LANT	HI	anu .	AMBIENT TEMP	ERATURE	60	F	PROBE HEATER	SETTING	250 330	10.00 PRINTERSON	WEIGHT	F PARTICUL	ATE, mg		1	
ATE	9-17		BAROMETRIC P		29.60		EATER BOX S	ETTING	330	Paleer No.	5/487				1	
OCATION (Cherry		ASSUMED MOIS				METER HE	182		Sample :	C.	() · · · ·			¥	Y
PERATOR	K. a.	701	PROBE LENGTH	. kn	722		_ PACTOR	0.34		Podwt					1	1
FACK NO.	V2.75	Sery a F	NOZZLE DIAME	TER, un	4.13		YAFACTOR _	0,989	<u> </u>		3/36				1	A
JN NO VAT			STACK DIAMET		575	F	_ OH/10TIS	655		We gard					1	1
AMPLE BOX N	10	47	MINLITES PER P			r	Of the second second	S. C. Mar 7 7 7 7	, .		· · · · · · · · · · · · · · · · · · ·		TOTAL	而實		
ETER BOX NO TART TIME	o. <u>C</u>	1001	number of Po Number of Po	276	- 24 -	H	PRESS		ſ		• 6.7 578 T	F0.4=0			LAST	
TAKI DIME		03:2	NUMBER OF PU	R15 -		1	ACROSS			GAS SAMPL	The state of the state of	FO.TER EXIT		CPIM	IMPINGER	
CLOCK	TRAVERSE	SAMPLING	STATIC	STACK	VELO	m	OPT	CE	GAS EAMPLE	DRY CAS ME		CAS	PROBE	AUNILIART	OUTLET	PUMP
TIME	POINT	TIME.	PRESSURE	TEMP		D	PUICO A (HA)	8.9	VOLUME	A. INLET	OUTLET	TEMP.	TEMP	TEMP.	TEMP.	VACUUM
(Hrs)	NUMBER	(8) min.		Trus T	e(APo	(AP)		DESIREB	(Vm) (1)	(n-1)%	(T=) T	11.00	*F	16.	'F	(ie. Hg)
	WI	0	-0. 6 5	94	090		7.7	1.10	533.050	60	60	735	260	69	64	7
322.5	7	7.5		94	6)92		11	1/3	537.45	68	G1	350	25/	67	61	3
830	3	15		4440	0.96		1/3	112	541.78	74	45	733	254	C5	61	3
8325	4			77.7			75	11/2	546 32	79	63	231	250	66	62	3
845	- 7-	32.5		100	0.98		15	108	550.83	30	64	250	258	66	62	3
		375					200			32	66	258		23	63	-
352,5	<u> </u>			1/7	0.75		0.91	9.91					260	43	64	-
700	7	45		1/4	0.48		-42-1	1.19	55932	94	67	355	258	23		=
407.5	8	525		107	11	9.	13	134	563.95	72	68	242	256	20	61	7
715	9	60		112	12		1.5	1516	1569.05	83	69	246	259	73	6)	4
9225	10	675		116	1.2		1.5	1.46	574.25	85	69	244	258	73	63	4
730	11	75		171	13		1.6	1.60	57960	85	70	246	258	7-3	€5-	_7
9375	12	325		110	1.1		7.21	1.35	584.82	87	70	247	255	37		4
5/10)		90		134	0.77		045	0.955			71	268	254	30	188	3
1009.5	1-3	975		177	0.35		1.0	104	54413	95	2/	77-2	257	3	467	3
1017	3	105		109	0 30		0.99	0.94	54345	37	22	242	255	85	63	3
1024.5	U	112.5		116	0.82		10	1.02	10775	34	72	251	250	841	37	3
032	1-3	1/20		1/2	0.86			1.00	607/4	85	2-2	245	255	84/	156	1 3
10395		1775		14/3	0.88		3	108	11/50	85	71	250	250	33	(7	3
	7	1325		- 1//5- -	032		1			86		250	249	83	56	
1647				1/2			1.0	101		75	Z!	750	243		57	->-
1054.2		142.5		1/3	096		1,2	1,18	62027	84	7.0			76		
10)	9	150	<u> </u>	1/4	10		12	123	624,89	84	122	25.7	245-	70	57	3_
109.5	10	1575		1/5	1.0		12	1.23	629.47	97	723	248	253	64	57	3
1117	11/	165	<u> </u>	115	1.1		1.4	1.36	634,23	39	73	250	253	165	57	4
1124.5	172	1725	}	127	10	}	1,1.	123	639.19	195	Tu	250	251	68	5-01	4
1/32	(Pu)	190	1	7	}	09787	Y	1.0420	6440201	1		1			1	
AVERAGE	24	180	-0.65 V	111.58		095	1.191	40.970	0.165		75.5 V				468	=4
							1	_		ra.					LEAK CREC	
VOLUME OR		H LTONID	3/07 114-	IMPINGER	Tr (-)	•	SILICA GEL		ORSAT DATA	TEME	1 ~	0,	٦	SYSTEM PE	E 40,00	
COLLECTED	<u> </u>			(m) OR WEIGH			WEIGHT	-		1 LINE	CO	1	4		2000	
		**	<u> </u>	<u>#3</u>	#4	#5	1	4	TRIAL 1	ļ			-	POS.	· -uca	ZT.).W@12.
WAL		i			l	1			TRIAL 2			1			41 4	

TRIAL 3

Form FDF 4003 00

IMPINGER RECOVERY DATA SHEET

Company: If Krank Date Set-up: 9-16-13

Location: Chicago FL Test Date: 9-17-13

Source: Date Recovered: 9-17-13

Run No.: FM-1-North USEPA Method: 5/202

Corresponding Filter Wgt: 813.6

Filter Container No: 5/987

Measurement Method: Weight or Volume

Impinger No.	Impinger Contents	Initial wt/vol g/mL	Final wt/vol g/mL	Difference wt/vol g/mL	Sample Container No.
1	mT	348.9	358.0	9.1	***
2	MT	598.9	599.1	0.2	No And Confession of the Annual Confession
3	2-100,1 DI	673,7	678.4	4.7	PROPERTY AND
4	~200,156	834.4	839.8	5.4	ATTACHER TO THE CONTRACT OF TH
5					
6		The same of the sa			(19.4)

ARI

FIELD DATA

.N7 □	It No	13	AMBIENT TEM		65		PROBE HEATE	RISEITING	250		WEIGHT		ATE, ag		1	
	27th C4.	<u> </u>	BAROMETRIC F		2960		HEATER BOX	DALLIES	256	Filter Non	2364	0			11/	1
RATOR	12/3	240	PROBE LENGT	if in	72.5		METER Ha	0.89		. Sample /	erell.				ľ	Į.
- CONTRACTOR -	VOITH		NOZZLE DIAME	TTER in	72		C, PACTOR Y, FACTOR	0538		Final set	316.4					į,
	TX-PY		STACK DIAMET	FER IN	595		PITOT NO.	655		We som	24.7					/
APLE BOX N			MINUTES PER I		73				·	TARREST TARREST			TOTAL	mg		
TER BOX NO		011209	NUMBER OF PO	DINTS	24	[T. TRES	SURE	}	····					PAOSS SECTION	
RT TIME	1	735	NUMBER OF PO	ORTS	五五	ļ.	DIFFER	ENTINE	i	GAS SAMP	LBC	FR.TER			LAST	
							ACROS	MITTER		TEMPA		EXIT			MPINGER	
TIME.	POINT	SAMPLING TIME	STATIC PRESSURE	STACK	ALLO			RCL:	GAS RAMPLE	DRT GAS MI		CAS	PROBE	AUXILIARY TEMP.	TEMP.	PUMP
1	NUMBER	(0) me	1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-		DESTRED	VOLUME	PILET	OUTLET	TEMP.	TEMP	i	1	
235	NOMBER !		(in,H ₁ O)	(I) I	143	(AP)	ACTUAL		(Ym) ft	or Company	C-U'r	5 7 7	7	18	F CO	(in Hz)
		0_	-0.50	146	0.80		0.93	0,98	649.40	85	72	239	252	69	83	2
42.5		7.5		125	0.80		0.98	0.98	653.95	85	73	251	25)	1		
250	3	15		120	0.82		1.1	1.10	65819	87	74	204	75-2	71	64	2
157.5	ч	225	1	119	298		1,2	1.18	662.88	38	75	248	251	7/	63	2
105	5	30		131	0.95		7. 5	110	6747	98	74	240	251	77	64	2
3/2.5	6	375		155	0.38		15	132	72523	87	70	250	252	20	62	
	7	45	 	1	0.86		13	150		86	25	2 41	235	70		3
20	8	73		1-4-6-					677.18			1		120	60	-
3277		52.5	<u> </u>	130	090		13	1.26	681.86	86	125	250	351	170	61	3
335	9	60	<u> </u>	139	0.93		113	1.30	638.82	87	75	251	251	70	63	3_
3425	10	47.5		141	10		1.4	139	692.05	87_	75	255	250		63	3
50	11	75		128	1.1		7.5	154	697.32	87	7-5	253	254	7/	63	3
357.5	÷ 5	825		157	177		15	15-4	703 75	87	76	251	244	70	63	>
11413		90	 	154	0.78			100	10809 7083		24	248	244	69	67	5
4305		975		142			10	1405								
				132	0.86		- /	1,20	7/2.70		76	1262	749	63	66	12
25		105	<u> </u>	140	0.80		10	(22	7/-22	90	アア	248	247	69	54	3
4355	4	1/25		136	0.88	L	_/_/_	1.14	12/62	90	78	251	1248	69	65	2
443	5	120		127	0.91		1.2	1.18	726.35	41	79	252	248	70	641	2
450.5	6	1275		146	079		1.0	1-02	731 10	40	79 30	254	750	70	64	5
450	3	/35		145	0.88		11	113	7357	88	79	251	251	69	64	-
505.5	3	1425	1	144	098	 	1/3	155	739.95	Q 7	78	253	257	70	63	1
5/3	9		1				1-/-3-	135	-		122	353		20		3
		150	·	142	1.0		12			87		-	250	-	64	-
520,5	10	157.5		142	1,2	ļ	7.6	1,5-5	750.20	82	176	25/	251	70	64	3
28	11	165		140	1112		2.6	155	756.02	87	76	251	250	10	EC	13_
5355	12	1725		122	1.2		1.16	1.55	K1.08	36	7.5	250	253	フィ	GZ)
543	FUD	180			7	1	7	1/	765,735		1	17	1			
ERAGE	24	180	-0.50	1325 √	1	0.9652	1.26.	1	116035	/	814	7		8		
	WEIGHT OF			IMPINGER			SILICA GEI	7	UBSAT	(Vm= 115					LEAK CHECT	ζ
LECTED			VOLUME	(ml) OR WEIG	HT (g)		WEIGHT	_	DATA	TIME	CO ₁	O ₂		SYSTEM PRI	10000	CTM@15
		#I	H2	*3	#4	#S	5		TREAL		1			POS	r. 2000 0	CFM@15
VAL								٦,	TRIAL 2	1						
TIAL			1	-		T	1		TRIAL 3	1	1		7	PITOT PP	1/2	@ > 3"F.
				 		 	 	-					7	1		@ > 3"B;
QUID COLL	TEC. LED					1,	1	_i	Average					rus	1	4-3 5

IMPINGER RECOVERY DATA SHEET

Measurement Method: Weight or Volume

Impinger No.	Impinger Contents	Initial wt/voi g/mL	Final wt/vol g/mL	Difference wt/vol g/mL	Sample Container No.
1	MT	370.2	393.8	23.6	weeken mengenjangan aphaphikan banyan me
2	MT	598.1	599.8	1.7	
3	210001 DZ	729.5	734.0	4.5	Militari entre de proposito de proposito de la compansa del compansa de la compansa de la compansa del compansa de la compansa
4	~2009 56	712.2	728.0	15.8	Man francisco de productivo de la constanta de
5				And the state of t	
6			Mario Americana de Propinsion de Pario de Antonio de Pario de Antonio de Pario de Antonio de Pario de	Programme Control of the Control of	(45.6)

* 100ml/Tadded prior to purge Purpe Stouted @ 1607

ARI

FIELD DATA

ANT	H Su		AMBIENT TEMP		48		PROBE HEATE		250	Carlo Alexander		F PARTICUL	ATE, ME		1	
TE	9-18-		BAROMETRIC P		29.45		TEATER BOX S				53641				/	
CATION	233		assumed mois Probe length		- /		METER H	0,84			在 的表示。	M ₂ A ₂ A ₂ A ₂ A ₂ A ₂ A ₃			Y	Ť
ACK NO.	No. FA			-	72		C. FACTOR	0.938		Taxa wa	637	813.8			1	- 1
N NO	North	77:4	STACK DIAME	7.6	€0€		Y. FACTOR	655		Wi-gain	222	017.0				
MPLE BOX			STACK DIAMET MINUTES PER P		0 198 595 7.5	'	PITOT NO.	_ 472	\	With Said			TOTAL	mg		_/ <
TER BOX N			NUMBER OF PO		24	£	PRES	SUI PRO	L					~	CROSS SECTION	
ART TIME	ر م		NUMBER OF PO		2		-DIFFER	ENTIAL		GAS SAMPL		FILTER EXIT	,	CBM	LAST IMPINGER	
CLOCK	TRAVERSE	SAMPLING TIME	PRESSURE	STACK TRACK	VELO:	CIT : TE	ORU	FICE	CAS SAMPLE	DRY GAS NOT		GAS TRMP.	PROBE	A UMBHAD Y TEMP.	OUFLET TEMP.	PUMP VACUU
(Era)	NUMBER	(a) min.	(ie, H ₂ O)	(TOTA	(A)		ACTUAL		(Vin) (C	(Ta _n)'F	Charles VI	7	' F	·F	F	(in Hg
240	1		-0.55	1/8	0.83	Clark 1	10	104	76730		67	78/	256	65	64	Z
475		4	-0,55	112	0.33			104		24		23/ 252	259	65	62	2
	3	43		14/			10		772.06	100	66	472	42.7			-
55		15			0.36		1,1	103	776.45	180	67	230	260	6,6	62	-
62.5	4	23.5		157	0.85		1.0	1.03	780.75	务上	67	73/	257	66	62	
10	5	30		153	036		1.1	1.05	785.31	82	68	231	756	67	63	3
17.5	6	37.5		130	0.74		096	096	79001	82	68	235	258	65	63	2
335	3.	15		121	093		77	/ 13	794.08	82	69	234	25-5	66	64	2
	8	525		116	70	h	1/2	1.12	79933	83	69	232	2.58	65	64	.2
3325 840	9		· · · · · · · · · · · · · · · · · · ·	114	1.3		1.5	1.46	80443	84	60	234	2 33	10	65	7
270	1	60			1.3		_1:2			0.7	70	233	257	65	6.6	3
517.5	10	675		113			1.5	1,36	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	834	10	- 433		1		3
855	11	25		1/3	17		1.5	1,46	8/4.60	24	70	233	25 %	47	66	3
9025	12	7.25		113.	0.51		1.5	1.46	819.94	85 29	20	225	258	67	66	25
915.5	17	90		108	0.51		0.99	0 99 82	5 385 18 25.400	79	70 70 71	239	276	69	68	12
0155	2	97.5		109	085		1.0	1.03	829.70	85	70	270	268	70	67	2
933		105		712	194		1.1	108	83395	45	Z	249	7/2	70	66	2
		1125		125	0.84		10	1.02	938.50	85	71	347	X 4	71	65	1 3
7405	4	130		137		}		1.000	84290	13.72	72	240	262	-	66	2
148	5				0.92		1.0	1.01		87	72		-	73	67	
755.5	6	1275		139	0.84		10	1.03	847.03	25	7 -		1364			1 3
003	7	135		141	0.80	<u> </u>	0.98	0.98	951.45	89	73	238	243	74	67	12
0/0.5	8	1425	L	142	084	i	61_	1.05	855-65	89	74	239	262	73	66	3
1018	4	150		142	0.95		1.2	1.18	86020	89	74	236	262	7.2	66	3
10755	10	1575		1413	1.0,		73	1.25	964.33	86	74	237	261	73	67	3
1033	1	169		144	11		1.4	1.37	869.25	55 59	Z	239	258	72	66	3
10405	1/2	1725	1	145	-	 	14	137	87435	60	7.7	235	1704	22	65	1 3
		130		177		ļ	11-	677		104	174	<u></u>		7		
1048	(SM)	130	ļ		ļ <u>.</u>	<u> </u>	1		879.550	1	-					
VERAGE	24	180	-057	130.33		09699	1.174	1	11/800	57/11					=68	1
OLUME OF	WEIGHT O	FLIQUID	1	IMPINGER			SILICA GEI	n V	SIAN.				-		LEAK CRUC	K
OLUECUL			VOLUME	(ml) OR WEIGH	T (g)	-	WEIGHT	_	DATA	TIME	CO ₂	02]	SYSTEM PR	: 0,006	CEMO
		#1	N2	F Q	#4	#5	e		TRIAL	L		1	_	POS	1.017	CFM@
INAL			1			1		1 8	TRIAL2					ì	•	
MITIAL							<u> </u>	7	TRIAL	1	(i)			PETOT PR	11-1	-@ > 3"F
3						-}			Average	}		-i -	1		1-5	€ > 3"E
LIQUID COL																

IMPINGER RECOVERY DATA SHEET

Company: H. Kramer Date Set-up: 9-16-13

Location: Ch.eago II. Test Date: 9-18-13

Source: North BH Date Recovered: 9-18-13

Run No.: PM-3-North USEPA Method: 5/202

Corresponding Filter Wgt: 813.8

Filter Container No: 53641

Measurement Method: Weight or Volume

Impinger No.	Impinger Contents	Initial wt/vol g/mL	Final wt/vol g/mL	Difference wt/vol g/mL	Sample Container No.
1	MT	360.2	369,6	9.4	Note: Managed According to the Control of the Contr
2	MT	606.6	606.4	-0.2	Managed allowed control and the second of th
3	~100al DI	740.4	753.1	12.7	AND THE RESIDENCE OF THE PROPERTY OF THE PROPE
4	~200g 56	700.7	722.5	71.8	
5			Recognizations contribute and Public and account to proper the property of the party of the part		SECURITY COLUMN ALLOCATION OF ARTHUR STOPS A GRAND STOPS
6		* that there is the little time to be a second and the little time.		secure for \$40 Malico Anderson to the control of the secure for th	43.7

100 ml DI added prior to parge Purge Storted @ 11:15